.
Mathematics
Study Course Description
Course Description Statuss:Approved
Course Description Version:5.00
Study Course Accepted:03.03.2020
Study Course Information | |||||||||
Course Code: | SBUEK_046 | LQF level: | Level 6 | ||||||
Credit Points: | 3.00 | ECTS: | 4.50 | ||||||
Branch of Science: | Mathematics | Target Audience: | Marketing and Advertising; Management Science | ||||||
Study Course Supervisor | |||||||||
Course Supervisor: | Evija Liepa | ||||||||
Study Course Implementer | |||||||||
Structural Unit: | Department of International Business and Economics | ||||||||
The Head of Structural Unit: | Romāns Putāns | ||||||||
Contacts: | Riga, 16 Dzirciema Street, C block, Room C-215, sbek![]() | ||||||||
Study Course Planning | |||||||||
Full-Time - Semester No.1 | |||||||||
Lectures (count) | 7 | Lecture Length (academic hours) | 2 | Total Contact Hours of Lectures | 14 | ||||
Classes (count) | 7 | Class Length (academic hours) | 2 | Total Contact Hours of Classes | 14 | ||||
Total Contact Hours | 28 | ||||||||
Part-Time - Semester No.1 | |||||||||
Lectures (count) | 5 | Lecture Length (academic hours) | 2 | Total Contact Hours of Lectures | 10 | ||||
Classes (count) | 4 | Class Length (academic hours) | 2 | Total Contact Hours of Classes | 8 | ||||
Total Contact Hours | 18 | ||||||||
Study course description | |||||||||
Preliminary Knowledge: | Basic economics and mathematics at the secondary school level. | ||||||||
Objective: | To provide knowledge of advanced mathematical methods related to solving various economic problems. To form a notion of possibilities for mathematical modelling and analysis of economic and business management situations. | ||||||||
Topic Layout (Full-Time) | |||||||||
No. | Topic | Type of Implementation | Number | Venue | |||||
1 | Clusters, classification thereof. Cluster operations. Visualisation of clusters. | Lectures | 2.00 | auditorium | |||||
2 | Logical operations with expressions. Predicates. Quantifiers. | Lectures | 1.00 | auditorium | |||||
3 | Determinants. Matrices, operations with them. | Lectures | 1.00 | auditorium | |||||
4 | Concept of function, properties of functions. | Lectures | 1.00 | auditorium | |||||
5 | Function boundary concept, continuous, interrupted functions. | Lectures | 1.00 | auditorium | |||||
6 | The first order derivative of a function. | Lectures | 1.00 | auditorium | |||||
7 | Function research algorithm. | Classes | 1.00 | auditorium | |||||
8 | Functions of two variables. | Classes | 1.00 | auditorium | |||||
9 | Calculation of the indefinite integral. Integration technique. | Classes | 1.00 | auditorium | |||||
10 | Calculation of the definite integral. Improper integrals. | Classes | 1.00 | auditorium | |||||
11 | Concepts of financial mathematics. | Classes | 1.00 | auditorium | |||||
12 | Annuity. Loans. | Classes | 2.00 | auditorium | |||||
Topic Layout (Part-Time) | |||||||||
No. | Topic | Type of Implementation | Number | Venue | |||||
1 | Clusters, classification thereof. Cluster operations. Visualisation of clusters. | Lectures | 1.00 | auditorium | |||||
2 | Logical operations with expressions. Predicates. Quantifiers. | Lectures | 1.00 | auditorium | |||||
3 | Determinants. Matrices, operations with them. | Lectures | 1.00 | auditorium | |||||
4 | Concept of function, properties of functions. | Lectures | 1.00 | auditorium | |||||
5 | Function boundary concept, continuous, interrupted functions. | Lectures | 1.00 | auditorium | |||||
7 | Function research algorithm. | Classes | 1.00 | auditorium | |||||
8 | Functions of two variables. | Classes | 1.00 | auditorium | |||||
9 | Calculation of the indefinite integral. Integration technique. | Classes | 1.00 | auditorium | |||||
10 | Calculation of the definite integral. Improper integrals. | Classes | 1.00 | auditorium | |||||
Assessment | |||||||||
Unaided Work: | Learning and completing assignments on each topic. | ||||||||
Assessment Criteria: | All completed practical work and acquisition of theory, report, exam. | ||||||||
Final Examination (Full-Time): | Exam (Written) | ||||||||
Final Examination (Part-Time): | Exam (Written) | ||||||||
Learning Outcomes | |||||||||
Knowledge: | After the completion of the course, students acquire knowledge in advanced mathematics. | ||||||||
Skills: | Students will be able to create and solve linear equation systems, work with matrices, study functions and solve tasks in financial mathematics. | ||||||||
Competencies: | Students will be able to classify sets, perform economic interpretation of matrices, explain function research algorithm, define concepts of financial mathematics. | ||||||||
Bibliography | |||||||||
No. | Reference | ||||||||
Required Reading | |||||||||
1 | Bože Dz., Biezā L., Siliņa B., Strence A. Uzdevumu krājums augstākajā matemātikā, R: Zvaigzne ABC, 1996. | ||||||||
2 | Koliškins A., Volodko I., Antimirovs M. Matemātika I tehnisko augstskolu studentiem, R: RTU, 2004-2005. | ||||||||
3 | Koliškins A., Volodko I., Antimirovs M. Matemātika II tehnisko augstskolu studentiem, R: RTU, 2005. | ||||||||
4 | Kronbergs E., Rivža P., Bože Dz., Augstākā matemātika,1.daļa, R: Zvaigzne, 1988. | ||||||||
5 | Kronbergs E., Rivža P., Bože Dz., Augstākā matemātika, 2.daļa, R: Zvaigzne, 1988. | ||||||||
6 | Revina I., Peļņa M., Bāliņa S. Uzdevumu krājums matemātikā ekonomistiem. R: Zvaigzne ABC, 2002. | ||||||||
Additional Reading | |||||||||
1 | Hazans M., Bāliņa S. Funkcijas un tirgus modeļi. - R:1996. - 127 lpp. | ||||||||
2 | Mizrahi A., Sullivan M. Mathematics for Business and Social Sciences. - Wiley&Sons, 1998. - 696.p. | ||||||||
3 | Peļņa M. Kopu teorijas pamatjēdzieni. - R: LU, 1992. | ||||||||
4 | Šteiners K. Matemātiskās analīzes elementi. - R: Zvaigzne, 1993. - 319 lpp. |