Pārlekt uz galveno saturu
Studiju programma
Vadītājs
Ināra Kantāne

Studiju kursa apraksts

Kursa apraksta statuss:Apstiprināts
Kursa apraksta versija:3.00
Kursa apraksta apstiprināšanas datums:01.07.2019
Par studiju kursu
Kursa kods:SL_015LKI līmenis:7. līmenis
Kredītpunkti:2.00ECTS:3.00
Zinātnes nozare:Matemātika; Varbūtību teorija un matemātiskā statistikaMērķauditorija:Rehabilitācija
Studiju kursa vadītājs
Kursa vadītājs:Ināra Kantāne
Studiju kursa īstenotājs
Struktūrvienība:Statistikas mācību laboratorija
Struktūrvienības vadītājs:Andrejs Ivanovs
Kontaktinformācija:Kapseļu iela 23, 2.stāvs, Rīga, +371 67060897, statistikaatrsu[pnkts]lv, www.rsu.lv/statlab
Studiju kursa plānojums
Pilns laiks - 1. semestris
Nodarbības (skaits)Lekciju ilgums (akadēmiskās stundas)Kopā lekciju kontaktstundas0
Nodarbības (numurs)12Nodarbību ilgums (akadēmiskās stundas)2Kopā nodarbību kontaktstundas24
Kopā kontaktstundas24
Studiju kursa apraksts
Priekšzināšanas:
Vidējās izglītības līmenim atbilstošas zināšanas matemātikā un informātikā.
Mērķis:
Iegūt pamatzināšanas un prasmes statistiskajās datu apstrādes metodēs (aprakstošā statistika, slēdzienstatistikas metodes atšķirību novērtēšanai un analītiska statistika), kas nepieciešamas noslēguma darba izstrādei un statistisko rādītāju pielietošanai savā specialitātē.
Tēmu saraksts (pilna laika studijas)
Nr.TēmaĪstenošanas formaSkaitsNorises vieta
1Ievads statistikā, statistikas loma pētījuma procesā. Datu veidi, mērskalas, datu ievade, datu sagatavošana MS Excel. Iepazīšanās ar IBM SPSS. Pamatdarbības ar datiem IBM SPSS programmā.Nodarbības1.00datorklase
2Aprakstošās statistikas rādītāji MS Excel un IBM SPSS.Nodarbības1.00datorklase
3Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji.Nodarbības1.00datorklase
4Statistiskās hipotēzes, to veidi. Hipotēžu pārbaude. P vērtība.Nodarbības1.00datorklase
5Parametriskas datu apstrādes metodes kvantitatīvajiem datiem. Neatkarīgo un atkarīgo izlašu salīdzināšana.Nodarbības1.00datorklase
6Neparametriskas datu apstrādes metodes kvantitatīvajiem datiem. Neatkarīgo un atkarīgo izlašu salīdzināšana.Nodarbības1.00datorklase
7Kvalitatīvo datu apstrāde. Atkarīgas un neatkarīgas izlases.Nodarbības1.00datorklase
8Korelācijas analīze. Regresijas analīze (Lineārā regresija).Nodarbības1.00datorklase
9Regresijas analīze (Binārā loģistiskā regresija).Nodarbības1.00datorklase
10Zinātnisko publikāciju analīze.Nodarbības1.00datorklase
11Patstāvīgais darbs ar datiem IBM SPSS.Nodarbības1.00datorklase
12Patstāvīgā darba prezentācija.Nodarbības1.00datorklase
Vērtēšana
Patstāvīgais darbs:
1. Individuālais darbs ar literatūru – sagatavošanās katrai nodarbībai atbilstoši tematiskajam plānam. 2. Patstāvīga zinātniskās publikācijas analīze. 3. Patstāvīgais darbs – katram studentam tiks sagatavoti pētījuma datu faili (vai students var izmantot sava pētījuma datus) ar nodefinētiem pētījuma uzdevumiem. Studentam vajadzēs statistiski apstrādāt datus, lai sasniegtu nodefinētos uzdevumus, izmantojot aprakstošās statistikas metodes, slēdzienstatistikas un/vai analītiskās statistikas metodes, aprakstīt iegūtos rezultātus noslēguma darbā, noformēt darbu atbilstoši prasībām un prezentēt iegūtos rezultātus pēdējā nodarbībā.
Vērtēšanas kritēriji:
Līdzdalība praktiskajās nodarbībās. Par katru kavēto nodarbību – tēmas kopsavilkums izmantojot norādīto literatūru (min. 1 A4 lapa). Studiju kursa beigās ieskaite: 1. Patstāvīgā darba mutiska prezentācija. 2. Daudzatbilžu tests ar teorētiskiem jautājumiem statistikā.
Gala pārbaudījums (pilna laika studijas):Ieskaite
Gala pārbaudījums (nepilna laika studijas):
Studiju rezultāti
Zināšanas:Pēc studiju kursa prasību izpildes studējošie būs apguvuši zināšanas, kas ļaus: * atpazīt statistisko terminoloģiju un izmantotās pamatmetodes dažāda veida publikācijās; * pārzināt MS Excel un IBM SPSS piedāvātas iespējas datu apstrādē; * pārzināt kritērijus datu apstrādes metožu izmantošanai; * spēs pareizi interpretēt svarīgākos statistiskos rādītājus.
Prasmes:Studiju kursa apguves rezultātā studējošie pratīs: * ievadīt un rediģēt datus datorprogrammās MS Excel un IBM SPSS; * korekti sagatavot datus statistiskai apstrādei; * izvēlēties piemērotas datu apstrādes metodes, t.sk., spēs veikt statistisko hipotēžu pārbaudes; * statistiski apstrādāt pētījuma datus, izmantojot datorprogrammas MS Excel un IBM SPSS; * izveidot tabulas un diagrammas MS Excel un IBM SPSS programmās ar iegūtajiem rezultātiem; * korekti aprakstīt iegūtos pētījuma rezultātus.
Kompetences:Studiju kursa apguves rezultātā studējošie būs spējīgi argumentēti pieņemt lēmumu par statistiskas datu apstrādes metožu izmantošanu pētījuma mērķa sasniegšanai un, izmantojot datorprogrammas MS Excel un IBM SPSS, praktiski pielietot apgūtās statistiskās pamatmetodes pētījumu datu apstrādē.
Bibliogrāfija
Nr.Atsauce
Obligātā literatūra
1Teibe U. Bioloģiskā statistika. – Rīga: LU Akadēmiskais apgāds, 2007, p 155.
2Field A. Discovering Statistics using IBM SPSS Statistics, 4th edition, ISBN-13: 978-1446249185, 2013.
3Petrie A. & Sabin C. Medical Statistics at a Glance, 3rd edition, 2009. ISBN: 978-1-405-18051-1