Prescriptive Analytics in Health Care

International Summer School: Economic Modelling in Health Care Riga, August 2018

Dr Sebastian Rachuba

Assistant Professor of Operations Management

University of Wuppertal Schumpeter School of Business and Economics rachuba@wiwi.uni-wuppertal.de

Schumpeter School of Business and Economics

City of Wuppertal

Vorpommern Bremen Brandenburg Niedersachsen Sachson-Anhalt Wuppertal Westfalen Sachsen Thüringen Hessen Rheinland Pfolz Bayern Boden-Württemburg

http://www.mygeo.info/landkarten/deutschland/Deutschland_in_Europa.png

City of Wuppertal

- Approx. 350,000 inhabitants
- Area of 168,41 km²
- Density: 2,100/km²
- Most famous for its suspension railway ("Schwebebahn")
- University funded in 1972

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/ Schwebebahn_G15.jpg/1200px-Schwebebahn_G15.jpg

University of Wuppertal

- University funded in 1972
- 3 different locations in the city
- 7 different faculties
- 1,800 employees
- Around 22,000 students:3,200 students in Business & Economics
- B.Sc. in Health Economics and Management (M.Sc. programme in preparation)

Background

Education

- M.Sc. in Management & Economics
- PhD on mathematical optimisation for operating room planning

Professional Appointments

2013 - 2014 Consultant to Medical Director, Städtisches Klinikum Solingen, Germany

2014 - 2017 Postgraduate Research Associate, University of Exeter, UK

Since 2017 Assistant Professor of Operations Management, University of Wuppertal, Germany

Research Interests

- Develop and apply optimisation & simulation models to solve healthcare problems
- Emergency Departments, inpatient wards, operating rooms, ambulance locations, ...

Outline

• Lecture

- Analytics What is it and how can we use it?
- Models & Methods Distinction and possible uses
- Application: Decision problems in location and operating room planning

Tutorial – Part I

- Software R and R Studio
- Location analysis

Tutorial – Part II

- Operating room planning
- Discussion/Presentations

Intended Learning Outcomes

- Distinguish different dimensions of Analytics
- Understand how prescriptive analytics can be applied to health care
- Understand existing mathematical optimisation models
- Independently develop simple optimisation models
- Solve optimisation models using software package R and solver
- Develop, solve and present case study results

Assessing prior knowledge

Analytics: Can you give a definition?

Optimisation: what is it?

• R and R Studio: Have you ever used it?

Optimisation in MS Excel: Do you have any experience with it?

Analytics – What is it?



Analytics – What is it?

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics

Provide data/structure

Provide data/structure

Analytics

Descriptive Analytics

- Understanding current issues is key to any further analysis
- Solving real-world problems requires understanding real-world data

Predictive Analytics

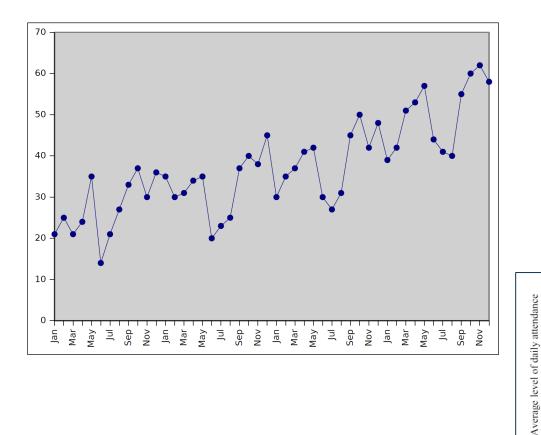
- How are current issues to develop?
- What will happen following changes?

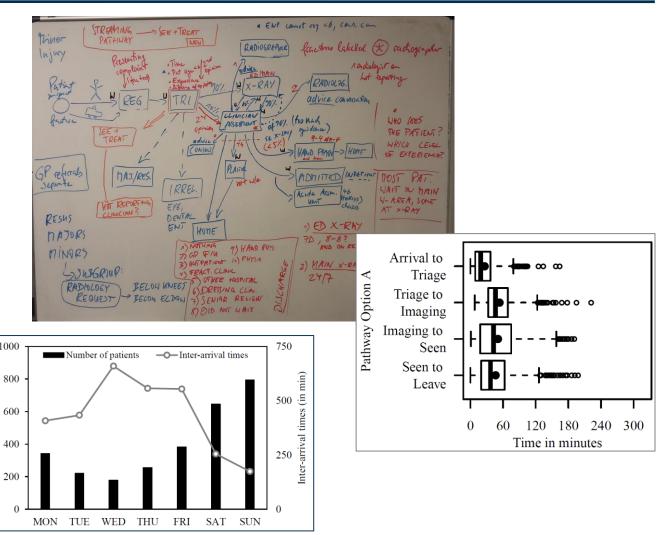
Prescriptive Analytics

- What should you do, given your objective
- Best possible solution (i.e. optimum) versus real-world setting

Analytics

• Typical examples could be:

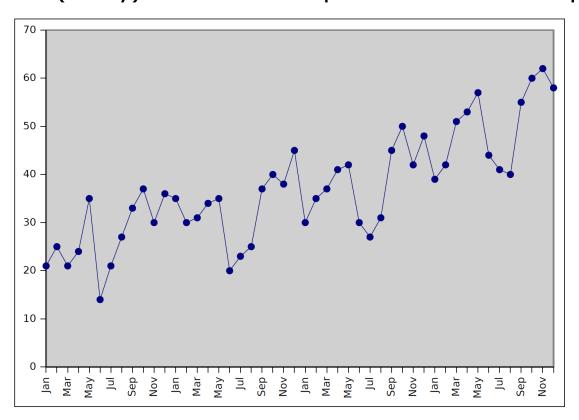


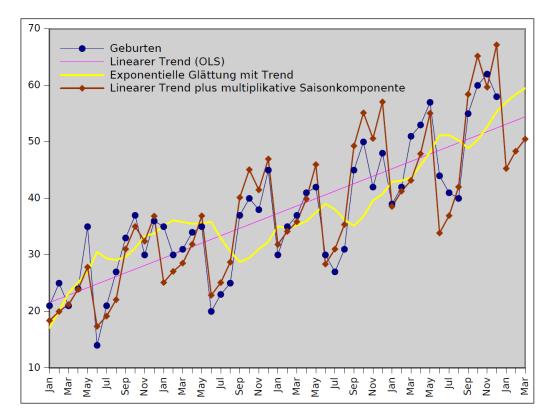


Analytics

Predictive Analytics

• (Likely) common example: Time series and prediction models





... other possible tool: Simulation

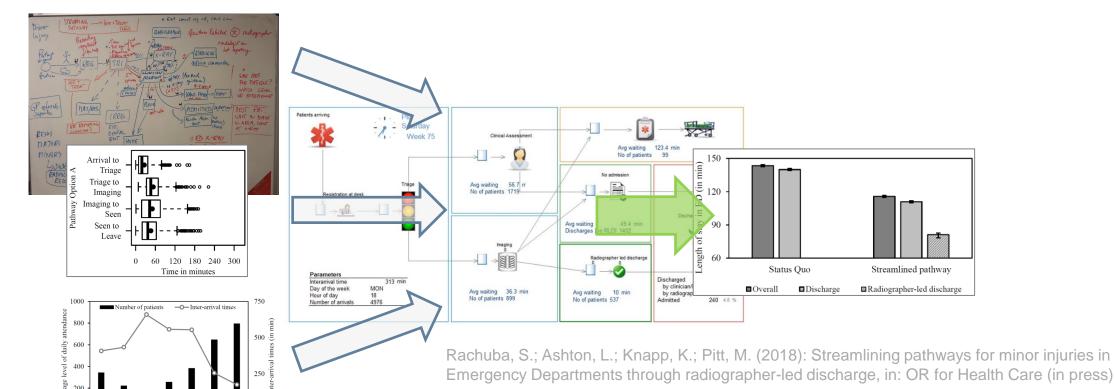
Predictive Analytics

Simulation

- Basic idea: replicate behaviour of "systems"
- Goals: (1) to explain how things work, (2) to predict likely effects of changes to the system
- Different paradigms:
 - System Dynamics
 - Agent-based Simulation
 - Discrete Event Simulation
 - Tool to replicate pathways and patient flows, e.g. in EDs
 - Dedicated software packages, such as Simul8, ARENA, etc.
 - Manually coded "from scratch"

Predictive Analytics

- Example: Assess the likely impact of the introduction of radiographer-led discharge at a hospital in the South West of the UK
- Means: Computer simulation model built to replicate processes in ED



Analytics

What is it?

Answers questions such as:

"What is the best possible decision?"

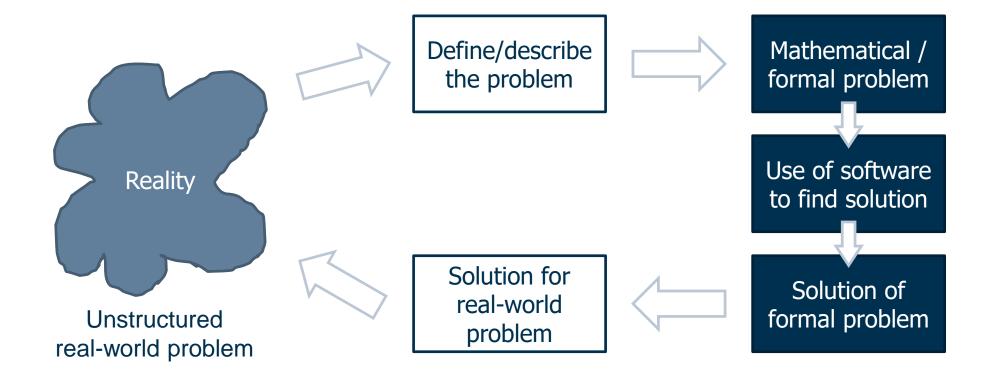
"What should be done to achieve a goal?"

In what situation do we want to prescribe?

- Decisions are often complex because of multiple dependencies (hard to process in your head)
- Dependencies can lead to counter-intuitive decisions one would normally not expect
- To see whether a decision is "good" is not always trivial (many "almost good" decisions)

Can you think of examples (in health care)?

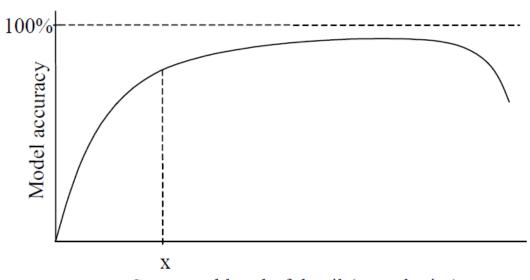
Model-based decision making:



A few characteristics of models:

- Models to describe, explain, or decide
- Given purpose / application
- Simplified version of reality
- As much detail as necessary
- As little detail as possible
- Structure is replicated

Example: mathematical optimisation models



Scope and level of detail (complexity)

Source: Robinson, S. (2008).

Optimisation models

Optimisation in a nutshell

• Three major parts:

- **1. Decision variables**What are possible decisions?
- **2. Constraints**Are there any restrictions?
- **3. Objective function** What is the overall goal?

$$10x_1 + 10x_2 o ext{max!}$$
 3 $2x_1 + x_2 \le 10$ 2 $x_1 + 2x_2 \le 8$ 2 $x_1, x_2 \ge 0$ 1

Optimisation in a nutshell

- Three major parts:
 - **1. Decision variables**What are possible decisions?
 - **2. Constraints**Are there any restrictions?
 - **3. Objective function** What is the overall goal?

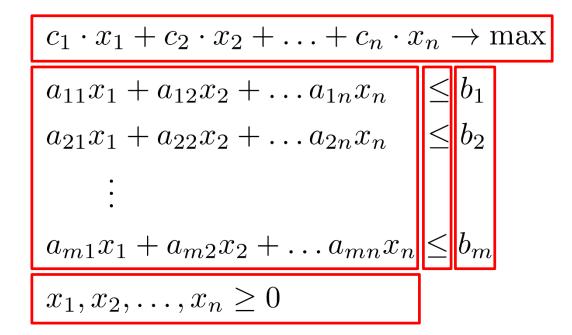
max	$\sum_{s \in \mathcal{S}} \sum_{j \in \mathcal{J}} \sum_{a \in \mathcal{A}} \sum_{h \in \mathcal{H}} w^s \cdot y^s_{ahj} \cdot \ln \left(p_{ah} + \varepsilon \right)$	3
s.t.	$\sum_{a \in \mathcal{A}} \eta_{ag} \sum_{h \in \mathcal{H}} y_{ahj}^s = x_{jg}^s$	$\forall j \in \mathcal{J}, g \in \mathcal{G}, s \in \mathcal{S}$
	$\sum_{a \in \mathcal{A}} \sum_{h \in \mathcal{H}} y_{ahj}^s = 1$	$\forall j \in \mathcal{J}, s \in \mathcal{S}$
	$\sum_{j \in \mathcal{J}} \sum_{a \in \mathcal{A}} \sum_{h \in \mathcal{H}} y_{ahj}^s \cdot c_h = C$	$\forall s \in \mathcal{S}$
	$\sum_{j\in\mathcal{J}} x_{jg}^s = d_g^s$	$\forall g \in \mathcal{G}, s \in \mathcal{S}$
	$\sum_{g \in \mathcal{G}_k} \sum_{j \in \mathcal{J} \setminus \mathcal{J}_k} x_{jg}^s = 0$	$\forall k \in \tilde{\mathcal{K}}, s \in \mathcal{S}$
	$\sum_{h\in\mathcal{H}} z_{hj} = 1$	$\forall j \in \mathcal{J}$
	$y_{ahj}^s \le z_{hj}$ $\forall a \in$	$\in \mathcal{A}, h \in \mathcal{H}, j \in \mathcal{J}, s \in \mathcal{S}$
	$z_{hj} \in \{0, 1\}$	$\forall h \in \mathcal{H}, j \in \mathcal{J}$
	$\chi_{i\sigma}^s \in \mathbb{N}_0$	$\forall j \in \mathcal{J}, g \in \mathcal{G}, s \in \mathcal{S}$

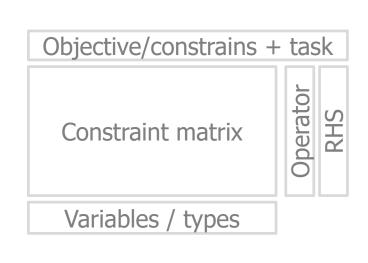
 $\forall a \in \mathcal{A}, h \in \mathcal{H}, j \in \mathcal{J}, s \in \mathcal{S}$

 $y_{ahi}^{s} \in \{0, 1\}$

Optimisation in a nutshell

Standard form of optimisation model:





Optimisation in a nutshell

Standard form of optimisation model:

$$c_1 \cdot x_1 + c_2 \cdot x_2 + \dots + c_n \cdot x_n \to \max$$
 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$
 $x_1, x_2, \dots, x_n \geq 0$

Typical structure:

$$c^{t}x$$

$$Ax \le b$$

$$x \ge 0$$

Optimisation in a nutshell

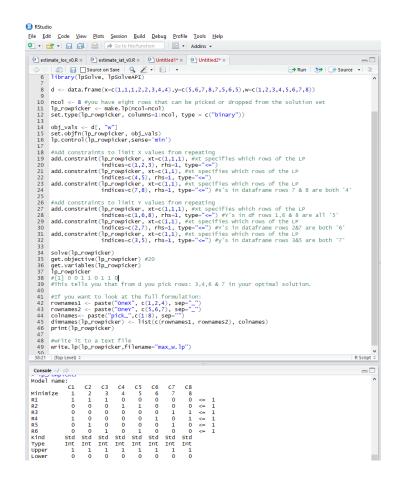
- Optimisation solvers use existing structure of problems/models
 - Commercial solvers: very fast, very expensive
 - Open source solvers: freely available, not so fast
 - MS Excel's built-in solver: easy to access, limited in scope
- Apply solution techniques (i.e. algorithms) to provide optimal solution
- Interfaces
 - Programming languages
 - Data import/export (Excel, csv, etc.)

Optimisation in a nutshell

Schumpeter School
of Business and Economics

Josephyness

- Transform models, if necessary
- Translate models: solver language
- Solve mathematical model
 - Use predefined algorithms, usually available through software package (such as simplex algorithm,
 - Develop new solution procedures
- Analyse solutions obtained for mathematical model
- Translate solutions to real-world problem



Prescriptive Analytics for Health Care

Classification of decision problems

- Distinction by time horizon:
 - Strategic
 - Tactical
 - Operational (online / offline)
- Distinction by managerial area:
 - Medical
 - Resources/Material
 - Finance

	Medical planning	Resource capacity planning	Materials planning	Financial planning	Λ	
Strategic	Research, development of medical protocols	Case mix planning, capacity dimensioning, workforce planning	Supply chain and warehouse design	Investment plans, contracting with insurance companies	ierarchica	
Tactical	Treatment selection, protocol selection	Block planning, staffing, admission planning	Supplier selection, tendering	Budget and cost allocation	l de	
Offline operational	Diagnosis and planning of an individual treatment	Appointment scheduling, workforce scheduling	Materials purchasing, determining order sizes	DRG billing, cash flow analysis	compo	
Online operational	Triage, diagnosing emergencies and complications	Monitoring, emergency coordination	Rush ordering, inventory replenishing	Billing complications and changes	sition -	
← managerial areas →						

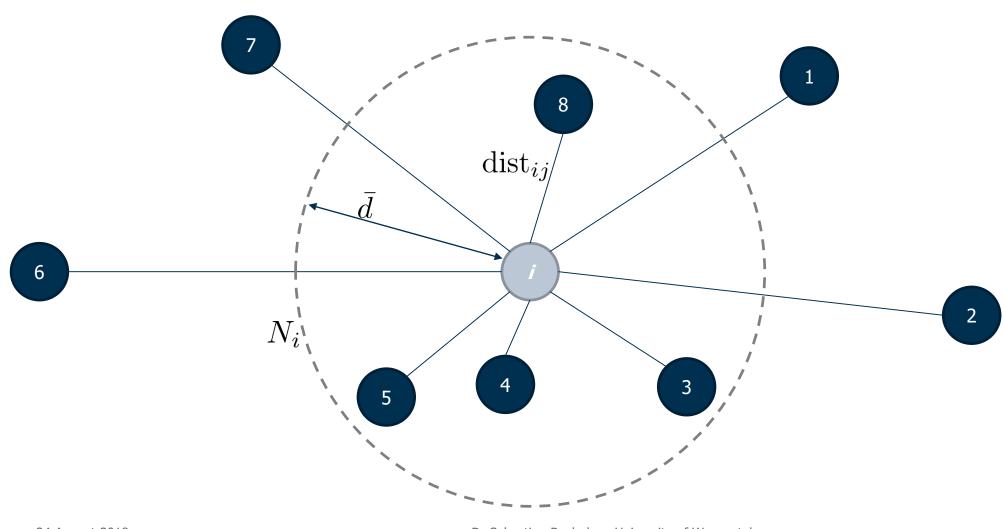
Source: Hans/van Houdenhoven/Hulshof (2012), p. 311.

- Many possible applications:
 - Staffing (how many, rotas, emergency assignments, etc.)
 - Locations (where/how many, capacity allocation, re-allocation, etc.)
 - Operating room (size, departmental allocation, selection, sequence, etc.)
 - Blood Supply Chain
 - Hospital Layout
- Focus on two areas:
 - 1. Location analysis
 - 2. Operating room planning

Location Planning

- Set covering location problem (SCLP, Toregas et al. 1971)
- Idea: What is the minimum number of locations so that every demand area can be "reached"?
- Key parts of the model:
 - ullet Possible supply sites (=locations): $J = \{1, 2, \dots, n\}$
 - ullet Possible demand sites: $I=\{1,2,\ldots,m\}$
 - ullet Distances between demand area and potential location: ${
 m dist}_{ij}$
 - Neighbourhood: subset of all potential locations which can be reached within given limit

Location Planning



Location Planning

- Set covering location problem (SCLP)
- Idea: What is the minimum number of locations so that every demand area can be "reached"?
- Decision variable:

$$y_j = \begin{cases} 1 & \text{if location } j \text{ is chosen,} \\ 0 & \text{else.} \end{cases}$$

- ullet Conditions to "reach" demand area: defined by neighbourhood set N_i
- Neighbourhood = close enough:

$$N_i := \{ j \in J \mid \operatorname{dist}_{ij} \le \bar{d} \}$$

Location Planning

Set covering location problem (SCLP)

- Idea: What is the minimum number of locations such that every demand area can be "reached"?
- Optimisation model:

$$\sum_{j\in J} y_j \to \min!$$

s.t.
$$\sum_{j \in N_i} y_j \ge 1$$
 $\forall i \in I$

$$y_j \in \{0, 1\} \qquad \forall j \in J$$

Minimise number of locations

Cover every demand region at least once

Choose location j (1=yes, 0=no)

Location Planning

- Maximal covering location problem (MCLP, Church and ReVelle 1974):
 - Choose locations such that covered population is maximised (demand: a_i)
 - Limited number of locations: P
- Decision variables:

$$y_i = \begin{cases} 1 & \text{if demand in region } i \text{ is covered,} \\ 0 & \text{else.} \end{cases}$$

$$x_j = \begin{cases} 1 & \text{if location } j \text{ is chosen,} \\ 0 & \text{else.} \end{cases}$$

Location Planning

- Maximal covering location problem (MCLP):
 - Choose locations such that covered population is maximised
 - Limited number of locations: P
- Optimisation model:

$$\sum_{i=1}^{m} a_i \cdot y_i \to \max!$$

s.t.
$$\sum_{j \in N_i} x_j \ge y_i \quad \forall i$$

$$\sum_{j=1}^{n} x_j = P$$

$$x_j \in \{0, 1\} \quad \forall j$$
$$y_i \in \{0, 1\} \quad \forall i$$

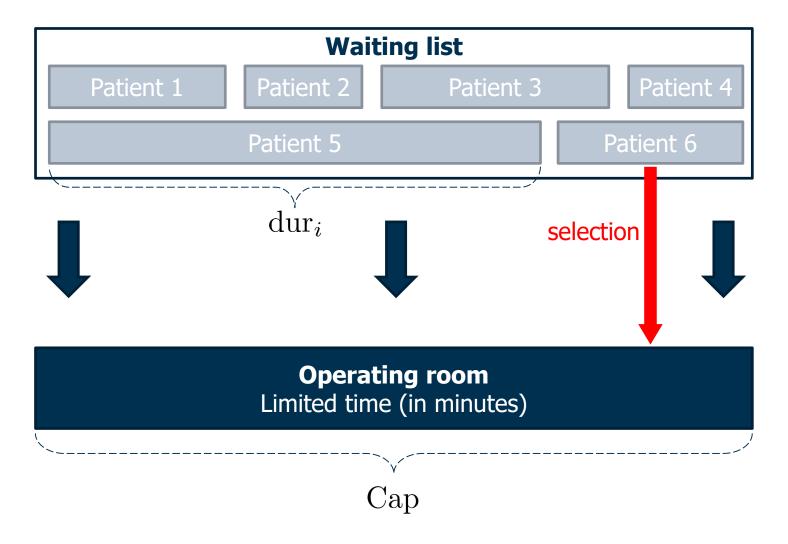
Maximise amount of covered demand

If location is chosen, demand is served

Number of locations is limited

Binary decisions (area served, location chosen)

Scheduling



Scheduling

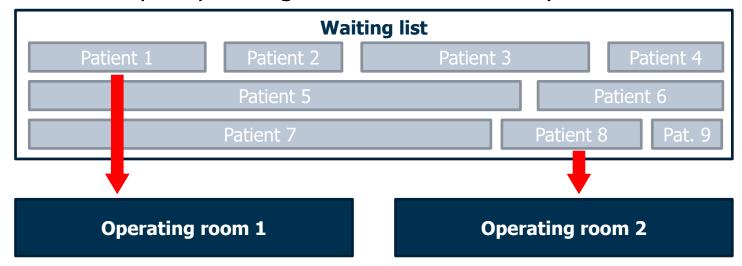
- Select patients (index: i) from waiting list: $P = \{1, 2, \dots, \bar{p}\}$
- Criteria:
 - As many patients as possible
 - Minimize idle time target utilisation
 - Patients with longest waiting time first
- Decision variable:

$$x_i = \begin{cases} 1 & \text{if patient is selected for surgery} \\ 0 & \text{else.} \end{cases}$$

- Surgery duration is known: dur_i
- Operating room has limited capacity: Cap

Scheduling

• Extension 1: Plan multiple operating rooms simultaneously



- ullet Distinguish operating rooms: $J=\{1,2,\ldots,n\}$
- ullet Potentially different capacities: Cap_j
- Decision variable:

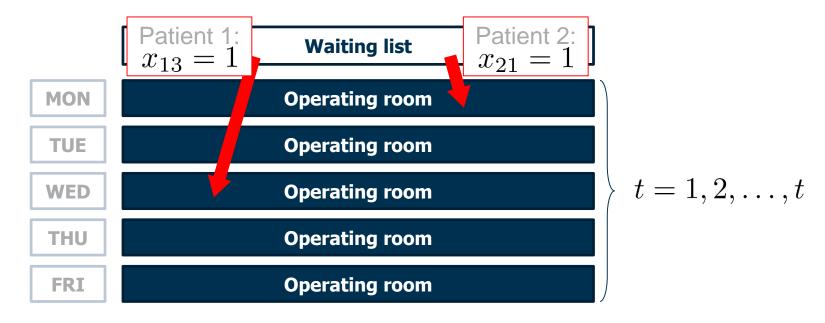
$$x_{ij} = \begin{cases} 1 & \text{if patient } i \text{ is selected for room } j \\ 0 & \text{else.} \end{cases}$$

Schumpeter School
of Business and Economics

Jasspfunger

Scheduling

• Extension 2: Plan a full week at once, five working days



Decision variable:

$$x_{it} = \begin{cases} 1 & \text{if patient } i \text{ is selected for day } t \\ 0 & \text{else.} \end{cases}$$

Scheduling

Optimisation model: maximise number of patients in planning horizon

$$\sum_{i=1}^{m} \sum_{t=1}^{T} x_{it} \to \max!$$

$$\sum_{i=1}^{m} \operatorname{dur}_{i} \cdot x_{it} \le \operatorname{Cap}$$

$$\sum_{t=1}^{T} x_{it} \le 1$$

$$x_{it} \in \{0, 1\}$$

$$\forall t \in \{1, 2, \dots, T\}$$
 Limit

$$\forall i \in \{1, 2, \dots, m\}$$

$$\forall i, t$$

Scheduled: yes/no

Which assumptions did we make?

- Ambulance locations:
 - Demand is known
 - Driving times are not changing
- Operating rooms:
 - Limited waiting list, equal importance of patients
 - Doctors are always available and can perform any surgery
 - Surgery duration is known, i.e. deterministic

What did we cover?

- Distinguish different types of Analytics
- Discuss potentials and limitations of optimisation
- Understand simple optimisation models
 - Ambulance location
 - Operating room planning

Literature

Textbooks

- Ozcan, Yasar A (2017): Analytics and Decision Support in Health Care Operations Management, 3rd Edition, Wiley.
- Brandeau, Margaret L.; Sainfort, Francois; Pierskalla, William P. (Eds.): Operations Research and Health Care: A Handbook of Methods and Applications, Springer.
- Hall, Randolph (2013): Patient Flow Reducing Delay in Healthcare Delivery, Springer.
- Vissers, Jan; Beech, Roger (2005): Health Operations Management: Patient Flow Logistics in Health Care, Routledge.

Research articles

- Salmon, A.; Rachuba, S.; Briscoe, S.; Pitt, M. (2018): A structured literature review of simulation modelling applied to Emergency Departments, in: Operations Research for Health Care (in press)
- Rachuba, S.; Ashton, L.; Knapp, K.; Pitt, M. (2018): Streamlining pathways for minor injuries in Emergency Departments through radiographer-led discharge, in: OR for Health Care (in press)
- Rachuba, S.; Salmon, A.; Zhelev, Z.; Pitt, M. (2018): Redesigning the diagnostic pathway for chest pain patients in emergency departments, in: Health Care Management Science, 21(2):177-191.
- Rachuba, S.; Werners, B. (2017): A fuzzy multi-criteria approach for robust operating room schedules, in: Annals of Operations Research, 251(1):325-350.
- Rachuba, S.; Werners, B. (2014): A robust approach for scheduling in hospitals using multiple objectives, in: Journal of the Operational Research Society, 65:546-556.

Useful links

- Script: Optimisation with R: http://www.is.uni-freiburg.de/resources/computational-economics/5 OptimizationR.pdf
- Using lpSolveAPI with R: https://www.r-bloggers.com/linear-programming-in-r-an-lpsolveapi-example/
- Set Covering problem: http://mat.gsia.cmu.edu/classes/integer/node8.html
- Modeling and Solving LPs with R (free book):
 https://www.r-bloggers.com/modeling-and-solving-linear-programming-with-r-free-book/
- Introduction to glpkAPI with R: https://cran.r-project.org/web/packages/glpkAPI/vignettes/glpk-gmpl-intro.pdf
- Introduction to linear programming: https://www.math.ucla.edu/~tom/LP.pdf

CAUTION

All models are wrong but some are useful! George E.P. Box (1919 - 2013)