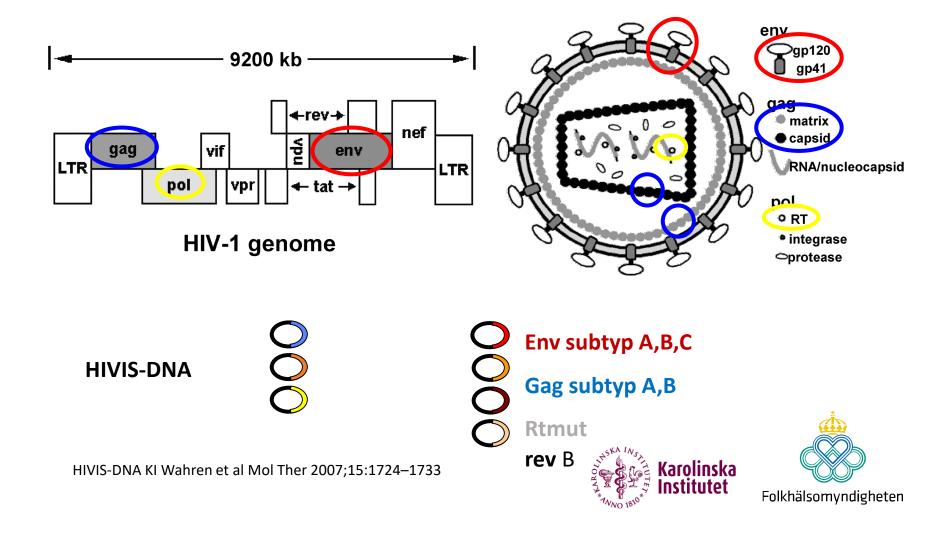
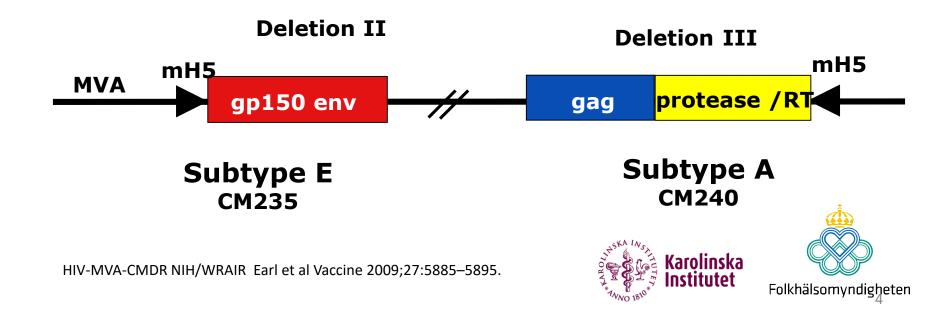

HIV vaccine-induced antibody responses impacts the accuracy of HIV testing algorithms in sub-Saharan Africa

Frank Msafiri^{1, 2}, Alice Manjate^{3, 5}, Sarah Lindroth⁵, Nelson Tembe⁴, Raquel Matavele Chissumba⁴, Victoria Cumbane ⁴, Ilesh Jani⁴, Said Aboud¹, Eligius Lyamuya¹, Sören Andersson^{5, 6}, <u>Charlotta Nilsson^{2, 6}</u>

¹ Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. ² Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.


- ³ Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique.
- ⁴ Instituto Nacional de Saúde, Maputo, Mozambique.
- ⁵ School of Medical Sciences, Örebro University, Sweden.
- ⁶ Public Health Agency of Sweden, Solna, Sweden.

- A series of clinical HIV phase I/II vaccine trials were conducted in Sweden, Tanzania and Mozambique 2005 to 2015
- Prime-boost vaccine strategy using DNA-MVAprotein vaccines


Introduction DNA-MVA-protein vaccine

Introduction DNA-MVA-protein vaccine

Modified Vaccinia virus Ankara (MVA)/ Chiang Mai Double Recombinant (CMDR)

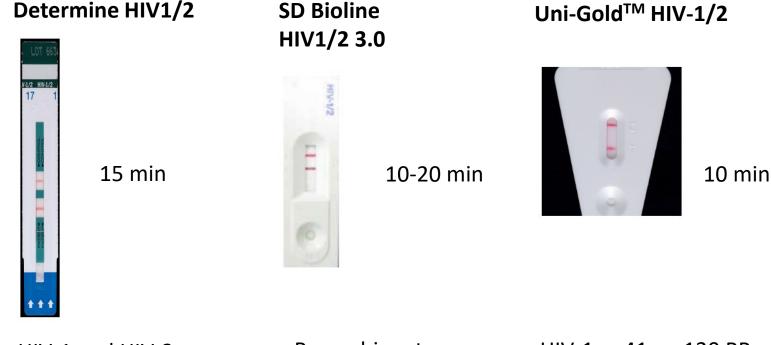
Developed by P Earl and B Moss, Laboratory of Viral Diseases, NIAID, NIH Produced by Walter Reed Army Institute of Research

Introduction DNA-MVA-protein vaccine

- is a recombinant subtype C HIV-1 gp140 Env glycoprotein, CN54rgp140 adjuvanted with GLA-AF.
- GLA-AF is an adjuvant containing an aqueous formulation of glucopyranosyl lipid A, which is a synthetic monophosphoryl lipid A (MPL)-like molecule

Clegg CH, et al GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza. PLoS One. 2014; 9(2):e88979

HIVIS01/02/05 phase I trial (3 HIV-DNA+2 HIV-MVA)


- All (100%) of 24 vaccinees developed antibodies to GAG
- All (100%) of 24 vaccinees were reactive in IMvHIV-1/HIV-2 III plus (Abbott) ELISA
- 13 (54%) of 24 were reactive in Enzygnost HIV Integral II ELISA
- 13 (54%) of 24 were also reactive in Western Blot (CDC criteria for positive classification; at least two bands of p24, gp41 or gp120/160)

- Healthy uninfected HIV vaccine recipients will develop antibody responses that may result in diagnostic immunoassay reactivity, also known as vaccine-induced seroreactivity (VISR)
- HIV DNA or RNA PCR is used in all clinical HIV vaccine trials to rule out infection
- Volunteers in HIV vaccine trials carry a card identifying them as HIV vaccinees

Introduction HIV diagnosis in resource–restricted countries depend on rapid diagnostic tests (RDTs)

Antigens:HIV-1 and HIV-2RecombinantRecombinant protein (RP)HIV-1 gp41, p24and synthetic peptideHIV-2 p36Antibodies: IgGAll isotypes

HIV-1 gp41, gp120 RP HIV-2 p36 RP

lgG

HIV diagnosis in resource–restricted countries depend on rapid diagnostic tests (RDTs)

The HIV diagnostic algorithm used in Tanzania Sequential testing using two RDTs

1. SD Bioline HIV1/2

Reactivity in the 1st RDT is confirmed by a 2nd RDT

2. Uni-Gold[™] HIV-1/2

Reactive 2 lines of any intensity appear in both the control and test areas.

Linkage to treatment and care

The HIV diagnostic algorithm used in Mozambique

Sequential testing using two RDTs

1. Alere Determine HIV1/2

Reactive 2 lines of any intensity appear in both the control and patient areas.

Reactivity in the 1st RDT is confirmed by a 2nd RDT

Reactive

both the control and test areas.

2. Uni-Gold[™] HIV

Linkage to → treatment and care

Objective

• To explore the impact of VISR on the performance of HIV rapid diagnostic tests and to evaluated two African countries' HIV diagnostic algorithms

Material and methods

Samples collected at peak immunogenicity

 137 stored plasma/serum samples from healthy HIVIS/TaMoVac vaccinees collected 1 month after the final vaccination (collected 2009 to 2014)

Samples collected over time

Stored serum samples from healthy HIVIS03/06 vaccinees

- 29 samples collected 1 month after 3XHIV-DNA+2XHIV-MVA
- 23 samples collected 16 months after 3XHIV-DNA+2XHIV-MVA
- 20 samples collected 3 years after 3XHIV-DNA+2XHIV-MVA

Material and methods

ELISA (4th generation diagnostic assay)

• Enzygnost[®] HIV Integral 4 ELISA (Siemens Healthcare Diagnostics Products GmbH, Marburg, Germany)

Western blot

• MP Diagnostics[™] HIV Blot 2.2 western blot assay (Eschwege, Germany)

Rapid diagnostic tests

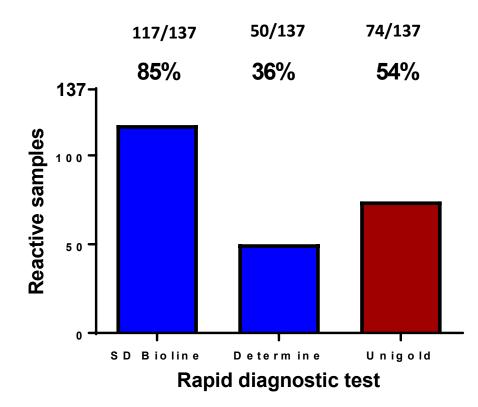
- SD Bioline HIV 1/2 3.0 (Standard Diagnostic Inc, Giheung-gu, Republic of Korea)
- Determine HIV 1/2 (Alere Medical Co.Ltd, Chiba, Japan)
- UniGold HIV (Trinity Biotech, Bray, Ireland)

ELISA (in-house vaccine-specific assay)

• Subtype C rgp140 (reported as end-point titer)

Results VISR was common at peak immunogenicity

Reactivity in Enzygnost® HIV Integral 4 ELISA: 128/137 (93%)


Western Blot

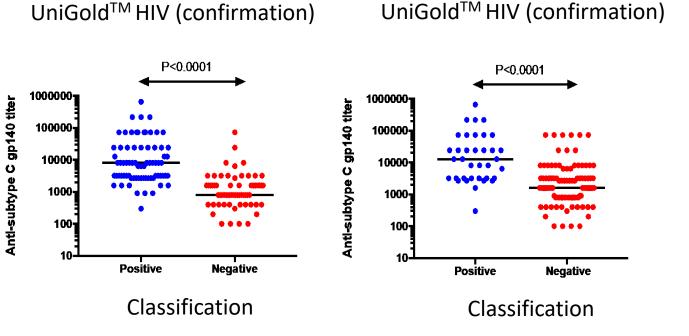
Organization	Criteria for positive interpretation	Frequency of VISR
CDC and APHL	Presence of any two of p24, gp41, gp120/gp160 bands	136/137 (99.3%)
WHO	Presence of two ENV bands with or without GAG or POL	91/137 (66.4%)

VISR was common at peak immunogenicity

Results Missclassification by HIV diagnostic algorithm

Country	Algorithm	Rate of missclassification
Tanzania	Sequential testing SD Bioline HIV1/2, Uni-Gold [™] HIV	74/137 (54%)
Mozambique	Sequential testing Alere Determine HIV1/2, Uni-Gold™ HIV	36/137 (26%)*

*Significantly lower, p<0.0001



Results- antibody titers matter (peak immunogenicity, n=137)

Tanzanian algorithm

SD Bioline HIV1/2 (screening)

Mozambican algorithm

Determine HIV1/2 (screening)

Results

The rate of missclassification wained over time in HIVIS03/06 vaccines (3xHIV-DNA+2XHIV-MVA)

Algorithm	Number of Reactive/ Number of Tested, (%)			
	1 month after the	16 months after the	3 years after the	
	second HIV-MVA	second HIV-MVA	second HIV-MVA	
	vaccination	vaccination	vaccination	
Tanzanian	14/29 (48)	2/23 (8.7)	0/20	
Mozambican	7/29 (24)	2/23 (8.7)	0/20	

Conclusion

- The HIV diagnostic algorithms used in Tanzania and Mozambique will missclassify a substantial proportion of healthy HIV vaccine recipients
- Efforts are needed to develop simple, affordable, serological or molecular tools that can discriminate VISR from true HIV infection at the point of care.

Msafiri F et al. Vaccines 2022, 10, 1062; doi. 10.3390/vaccines10071062

The volunteers

FoHM/KI

Gunnel Biberfeld Britta Wahren Charlotta Nilsson Karina Godoy Lindvi Gudmundsdotter Gunnel Engström Andreas Bråve Karl Ljungberg Karolinska/SöS

Eric Sandström Bo Hejdeman

Örebro University Sören Andersson

INS/CISPOC-Mozambique

Ilesh Jani Edna Viegas Nelson Tembe Bindiya Meggi Nafissa Osman **NIMR-Tanzania** Sayoki Mfinanga Mbazi Senkoro

CISPOC

MUHAS-Tanzania

Fred Mhalu Muhammad Bakari Eligius Lyamuya Said Aboud Agricola Joachim Patricia Munseri Deus Buma Candida Moshiro Eric Aris Mohamed Janabi Kisali Pallangyo Edith Tarimo

MMRC-Tanzania Leonard Maboko Asli Bauer Imperial College London Frances Gotch Roger Tatoud

MRC; UK Sheena McCormack Sarah Joseph Wolfgang Stöhr Sue Fleck

University Munich Michael Hoelscher

Arne Kroidl Christoffer Geldmacher

MHRP/WRAIR

Merlin Robb Mary Marovich Jeffrey Currier Victoria Polonis Nelson Michael **NIH/NIAID** Bernard Moss

Patricia Earl

San Raffaele Scientific Institute

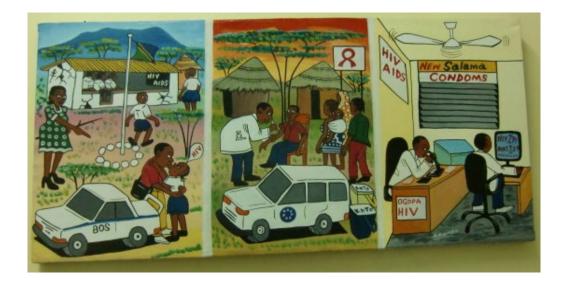
Gabriella Scarlatti

OSPEDALE SAN RAFFAELE

CA-VIMC ADCC Lab Guido Ferrari

BOJECT Richard Stout

VECURA


Pontus Blomberg

Financial support for clinical trials: from EU-INCO, EDCTP, Sida and the Swedish/Norwegian HIV/AIDS Team for Africa, Lusaka

The present study was supported by 🐝 刘

Thank you!

charlotta.nilsson@ki.se charlotta.nilsson@fohm.se

21