THE POTENTIAL OF PLANTS AS RAPID-RESPONSE EXPRESSION PLATFORMS FOR PANDEMIC RESPONSE

Ed Rybicki

Director, Biopharming Research Unit; member,

Institute of Infectious Disease & Molecular Medicine

Molecular f

Unique advantages to producing prot

- Lower cost as biomass much cheape
- Less stringent / expensive infrastruc
- Much more rapidly scalable than ar
- Support eukaryotic PTMs & assemb

VS

Expression of proteins in plants

Cost of biomass: 100 – 1000-fold < animal cell and 10 – 100-fold < bacterial or

yeast cell production

DNA coding for protein

Introduce into plants or cells by transient transfection with *Agrobacterium*

OR transgenic

Cheap AND infinitely scalable

Expensive downstream processing

= conventional processes

DOSE HUMANS

Formulate for Injection OR oral dosing

Front. Plant Sci., 28 September 2022 Sec. Plant Biotechnology

https://doi.org/10.3389/fpls.2022.901978

This article is part of the Research Topic

Plant Science's Contribution to Fighting Viral Pandemics: COVID-19 as a Case Study, Volume II

View all 4 Articles >

A recombinant subunit vaccine candidate produced in plants elicits neutralizing antibodies against SARS-CoV-2 variants in macaques

Kemthong⁶,

Arunee Thitithanyanont⁵,

Anan Jongkaewwattana³ and

Waranyoo Phoolcharoen^{1,2*}

H5N1 Influenza HA Expression Results

HA gene human codon optimised, full length (H5) and transmembrane domain truncated (H5Tr) versions made

Transient = 0.8 g protein / kg plant material
Stable transgenics = 0.3 g protein / kg plant material

H5 HA Budding as VLPs in Plants

2021: "...a plant-made 4-valent seasonal influenza vaccine is at least equivalent to conventional eggmade vaccine, and possibly better at eliciting cellular responses because of its nature as virus-like particles instead of subunit proteins.

There are no other viable VLP-based flu vaccines available. The clinical trial results established the vaccine candidate as a viable alternative to conventional offerings, and moreover, one that can be very quickly tailored to account for changes in circulating influenza virus strains, unlike egg production which involves a 6-month turnaround."

https://www.infectiousdiseaseadvisor.com/home/topics/respir atory/influenza/plant-based-vaccines-higher-cellularresponse-for-influenza-potential-coronavirus/

Seasonal Flu

Medicago's team is developing a quadrivalent and adjuvanted virus-like particle (VLP) influenza vaccine candidate.

Disclaimer: This vaccine is not approved for use in humans.

Learn more about Influenza

- First produced as cGMP batches in early 2020
- Licenced for use in Canada in February 2022 after Phase 3 trials

published: 13 September 2021 doi: 10.3389/fpls.2021.738619

A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice

Jennifer Stander¹, Aleyo Chabeda², Edward P. Rybicki^{1,3} and Ann E. Meyers^{1*}

¹ Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
² Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School,
Worcester, MA, United States, ³ Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa

SPYTAG / SPYCATCHER System

Figure 1.8. Generation of SpyTag/SpyCatcher. **(A)** Schematic of CnaB2 splitting into ST (red) and SC (grey). **(B)** The environment of the isopeptide bond between Asp117 (carbons orange) and Lys31 (carbons yellow), facilitated by Glu77 (carbons grey). Article open access. (Reddington & Howarth, 2015).

SpyTag-AP205 180 binding motifs

EdIII-SC

Mouse Immunogenicity

BALB/c mice were immunised with three doses of 5 µg each

Pan-flavirus vaccine?

EDIII Domains + SpyCatcher

Yellow fever virus

Dengue viruses

Zika virus

West Nile virus

Japanese encephalitis virus

Tick-borne encephalitis virus

Manufacture at cGMP, stockpile

Manufacture at cGMP separately, stockpile

Future Applications - 1:

Rapid, local, inexpensive small-scale manufacture of lab / diagnostic reagents:

Rapid response reagents can also be quickly made in University labs or diagnostic facilities, as required, by sharing of cloned DNA and transient expression in plants. These include:

- Pathogen antigens
- Monoclonal Abs
- Detection reagents eg: antihuman::HRP conjugate
- RNA positive control for RT-PCR in plant virus coat

Future Applications - 2:

Localised large-scale manufacture of vaccines:

- Vaccines that are required to be cheap for extended EPI purposes and wide coverage – eg: influenza, SARS-CoV-2
- Rapid-response vaccines for "orphan" or neglected diseases (Lassa, Marburg, Ebola, Sudan, Nipah viruses) near points of outbreak – including RNA vaccines

LMICs manufacture of monoclonal antibodies, therapies

- Much cheaper antibodies for infectious and noninfectious disease therapy (HIV, RSV, rheumatoid arthritis, breast cancer, snake bite)
- Cheaper prophylactics & therapeutics for humans and animals e.g. to combat antibiotic resistance in microbial populations

UC Davis Team Develops GM Lettuce to Protect Astronauts' Bones in Long Spaceflights

March 23, 2022

Conclusion

PMF could be the gateway technology that allows most countries to participate in all levels of the One Health Initiative: making reagents for use as diagnostics that could also be used as therapeutics or rapid-response vaccines for diseases of animals, and even humans

