

HPV genotype distribution in PLWH for anal screening and early detection of anal cancers

Sona Chowdhury, Ph.D.

Global burden of HPV-attributable squamous cell carcinoma of the anus in 2020, according to sex and HIV status

Intl Journal of Cancer, First published: 28 August 2022, DOI: (10.1002/ijc.34269)

A meta-analysis of anal cancer incidence by risk group: Toward a unified anal cancer risk scale

Objective

To study the type-specific prevalence of HPV in anal cancer and the anal cancer precursor, anal squamous intraepithelial lesion in PLWH and HIV-negative individuals and compare it to benign anal epithelium

Benign
$$\stackrel{\longrightarrow}{\leftarrow}$$
 $\stackrel{\text{HPV}}{\stackrel{\longrightarrow}{\leftarrow}}$ $\stackrel{\longrightarrow}{\leftarrow}$ $\stackrel{\text{Anal}}{\stackrel{\text{HSIL}}{\stackrel{\rightarrow}{\leftarrow}}$ $\stackrel{\text{Anal}}{\stackrel{\text{SCC}}{\stackrel{\text{SCC}}{\stackrel{\rightarrow}{\leftarrow}}}$

Progression of anal disease

Anal FFPE samples

HPV type classification -IARC classification

High-risk types

16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82

Probable high-risk types

26, 53, 66

Low-risk types

6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, 84, 86, 87,62 and 34

Material & Methods

HPV genotyping

- DNA extracted from FFPE blocks
- Amplified by polymerase chain reaction (PCR)
- Primer set MY09/MY11 (MY-PCR).
- HPV genotyping was performed by dot-blot hybridization
- Biotin-labelled probe for 39 different HPV genotypes and a probe for beta-globin.

Nomenclature

- Single infection : Infection with one HR or LR type only
- Multiple infection : more one HR
 - : more than one LR
 - : combination of HR + LR
- Type unknown : HPV genotype could not be detected
- Non-16 oncHPV : HR HPV type other than HPV 16

	Benign* (N=21, N%)	HSIL (N=21, N%)	SCC (N=26, N%)		
Age, years					
<25	0	0	0		
25-39	3 (14.3%)	6 (28.6%)	2 (7.7%)		
40-49	7 (33.3%)	4 (19.1%)	6 (23.1%)		
50-59	8 (38.1%)	7 (33.3%)	12 (46.2%)		
60-69	3 (14.3%)	3 (14.3%)	5 (19.2%)		
70 and above	0	1 (4.8%)	1 (3.9%)		
Sex					
Male	19 (90.5%)	18 (85.7 %)	24 (92.3%)		
Female	2 (9.5 %)	3 (14.3%)	2 (7.7%)		
HIV viral load**					
>20 and <1000 /ml	9 (42.9%)	3 (14.3%)	4 (15.4%)		
1000 - <4000/ml	1 (4.8%)	0	2 (7.7)		
4000-99,999/ml	1 (4.8%)	1 (4.8%)	0		
>100,000/ml	0	0	1 (3.9%)		
Not detectable	10 (47.6%)	13 (61.9%)	17 (65.4 %)		
No data	0	4 (19.1%)	2 (7.7%)		
Immune status, CD4 ⁺ counts ***					
CD4 >500/mm3	10 (47.6%)	5 (23.8%)	9 (34.6%)		
CD4, 200-500/mm ³	5 (23.8%)	8 (38.1%)	11 (42.3%)		
CD4<200/mm3	6 (23.6%)	5(23.8%)	4 (15.4%)		
No data	0	3 (14.3%)	2 (7.7%)		
Antiretroviral therapy (ART) use					
Yes	18 (85.7%)	16 (76.2%)	24 (92.3%)		
No	3 (14.3%)	1 (4.8%)	1 (3.9%)		
No data	0	4 (19.1%)	1 (3.9%)		

Medical characteristics of people living with HIV (PLWH) diagnosed with benign anal lesions anal HSIL and anal SCC

Distribution of HPV types in benign, HSIL, SCC samples

People living with HIV (PLWH)

Single and multiple HPV infections (HPV16, Non-16 oncHPV, LR) found in benign, PLWH and HIV-negative individuals

2a) Benign	PLWH (N=21)	HIV-negative (N=13)
HPV 16 only	0	1 (7.7%)
HPV 16 + Non-16 oncHPV*	0	0
HPV 16 + LR**	1 (4.8%)	0
HPV 16 + Non-16 oncHPV + LR	1 (4.8%)	0
Non-16 oncHPV only	2 (9.5%)	0
More than one Non-16 oncHPV	0	0
Non-16 oncHPV + LR	1 (4.8%)	0
LR only	0	1 (7.7%)
More than one LR	5 (23.8%)	0
Type unknown	3 (14.3%)	2 (15.4%)
No HPV	8 (38%)	9 (69.2%)

Single and multiple HPV infections (HPV16, Non-16 oncHPV, LR) found in HSIL lesions in PLWH and HIV-negative individuals

2b) HSIL	PLWH (N=21)	HIV-negative (N=9)
HPV 16 only	9/21 (42.8%)	6/9 (66.7%)
HPV 16 + Non-16 oncHPV	3/21 (14.3%)	2/9 (22.2 %)
HPV 16 + LR	2/21 (9.5%)	0
HPV 16 + Non-16 oncHPV + LR	0	0
Non-16 oncHPV only	2/21 (9.5%)	0
More than one Non-16 oncHPV	0	0
Non-16 oncHPV + LR	3/21(14.3%)	1/9 (11.11%)
LR only	0	0
More than one LR	0	0
Type unknown	1/21 (4.7%)	0
No HPV	1/21 (4.7%)	0

Single and multiple HPV infections (HPV 16, Non-16 oncHPV, LR) found in SCC lesions in PLWH and HIV-negative individuals

2c) SCC	PLWH (N=26)	HIV-negative (N=25)
HPV 16 only	11/26 (42.3%)	17/25 (68%)
HPV 16 + Non-16 oncHPV	3/26 (11.5%)	1/25 (4%)
HPV 16 + LR	4/26 (15.4 %)	0
HPV 16 + Non-16 oncHPV + LR	0	0
Non-16 oncHPV only	4/26 (15.4 %)	0
More than one Non-16 oncHPV	2/26 (7.7 %)	1/25 (4%)
Non-16 oncHPV + LR	1/26 (3.8 %)	1/25 (4%)
LR only	0	0
More than one LR	0	1/25 (4%)
Type unknown	1/26 (3.8 %)	3/25 (12%)
No HPV	0	1/25 (4%)

Associations of HPV16 with anal disease, overall and stratified by presence of HIV or Non-16 oncHPVs

Model	Stratum	Ν	Proportion of samples with HSIL/cancer (95% CI);	RR [of (HSIL/Cancer) v. (Benign)] (95% CI); p-value
	Overall	115	70.4 (62.6, 79.3)	
1	HPV 16-	54 #	42.6 (30.2, 56.0)	
	HPV 16+	61	95.1 (85.8,98.4)	2.23 (1.63 to 3.06); p<0.0001
2	HPV 16-, HIV-	20	40.0 (23.4, 68.4)	
	HPV 16+, HIV-	27	96.3 (89.4, 100)	2.41 (1.40 to 4.14); p= 0.0015
	HPV 16-, HIV+	34	44.1 (30.2, 64.4)	1.10 (0.57 to 2.13); p=0.77
	HPV 16+, HIV+	34	94.1 (86.5, 100)	2.35 (1.37 to 4.05); p=0.002
3	HPV 16-, Non-16 oncHPV -	36 ^	22.2 (12.1, 40.9)	
	HPV 16+, Non-16 oncHPV -	51	96.1 (90.9, 100)	4.32 (2.34 to 7.99);p <0.0001
	HPV 16-, Non-16 oncHPV +	18	83.3 (67.8, 100)	3.75 (1.97 to 7.15); p< 0.0001
	HPV 16+, Non-16 oncHPV +	10	90.0 (73.2, 100)	4.05 (2.12 to 7.72);p <0.0001

Discussion-I

- HPV 16 is the main etiological agent for both anal HSIL and SCC irrespective of HIV serostatus
- Although the proportion of single infection with HPV 16 was more in HIV-negative individuals compared to PLWH
- Benign tissues from PLWH had a high proportion both HR and LR HPV types. Therefore, HIV serostatus influences HPV infection and prevents HPV clearance and increases the likelihood of development of anal disease

Discussion-II

- Non-16 oncHPV plays a role in development of anal disease
- HIV mediated immunosuppression was associated with a disproportionate increase in non-16 oncHPV types other than HPV 16 in PLWH
- Multiple HPV infection was a hallmark feature for all tissues from PLWH -indicating that PLWH are at a greater risk of infection with multiple HPV types which may be a marker of persistent disease

Anal Cancer/HSIL Outcomes Research Study (ANCHOR)

Whether treatment of anal HSIL reduces the progression to cancer and is a safe and effective strategy

- Randomized controlled trial
- 4446 participants living with HIV-no prior anal cancer
- Treatment group/Monitoring group
- Primary outcome progression to anal cancer in a time-to-event analysis

Rate of progression to cancer was 57% lower in treatment group vs active monitoring group

Kaplan–Meier Curve of the Time to Progression to Anal Cancer

N Engl J Med 2022;386:2273-82. DOI: 10.1056/NEJMoa2201048

Α

Conclusion

- ANCHOR trial-supports the inclusion of routine screening with detection & treatment of anal HSIL –anal cancer prevention for PLWH
- Optimal screening algorithms based on HPV DNA testing are needed to identify individuals at highest-risk
- HPV 16 based screening programs may miss a subset of individuals
- Screening tests based on a broader range of oncogenic type are needed specifically for PLWH
- Low-risk types are not needed to be included in screening tests
- Prospective studies-we need to confirm these updated screening approaches

Acknowledgements

- Teresa M. Darragh
- J.M. Berry-Lawhorn
- Maria G. Isaguliants
- Maxim Vonsky
- Joan F. Hilton
- Ann A. Lazar
- Joel M. Palefsky
- Patients provided the samples
- National Institute of Health (NIH), National Cancer Institute (NCI), R01 CA217715/CA/NCI NIH HHS/ United States & extramural RFBR 17-54-30002 M.I, was supported by Latvian Science Fund LZP 2021/1-0484.

21NPUBLISHED DATA-DO NOT COPY OR DISTRIBUTE"