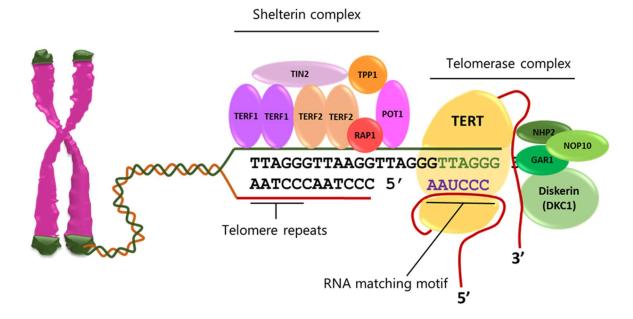


VIRCAN2024 Conference

Chronic viral infections and cancer, openings for vaccines and cure 21-22 November 2024 (online)

Mechanisms of telomerase reverse transcriptase reactivation in cancer

Maria Lina Tornesello Molecular Biology and Viral Oncology Unit


Outline

- > Telomeres and telomerase
- Oncoviruses enhancing telomerase activity
- > TERT promoter mutations and activation of telomerase expression
- > Temporal acquisition of TERT promoter mutations in cancer
- > Therapeutic opportunities

Telomerase

- Telomerase is a ribonucleoprotein complex formed by the RNA template component (TERC) and a tetrad of proteins including dyskerin, GAR1, NHP2 and NOP10 as well as the reverse transcriptase holoenzyme TERT.
- Transcriptional activation of TERT is the ratelimiting step in the assembling of active telomerase complex. Although TERT is expressed in stem cells, it is naturally repressed in terminally differentiated somatic cells.
- Telomeres consist of TTAGGG telomeric repeats, forming a long region of double stranded DNA terminating in the single stranded G-rich overhang packaged by histones into chromatin and is bound by the sheltering complex

Tornesello et al. Front Cell Dev Biol. 2023

Long and short telomeres

Long telomeres

- Long deprotected telomeres
- Accumulation of DNA damage
- Chromosomal fusions
- tumour formation

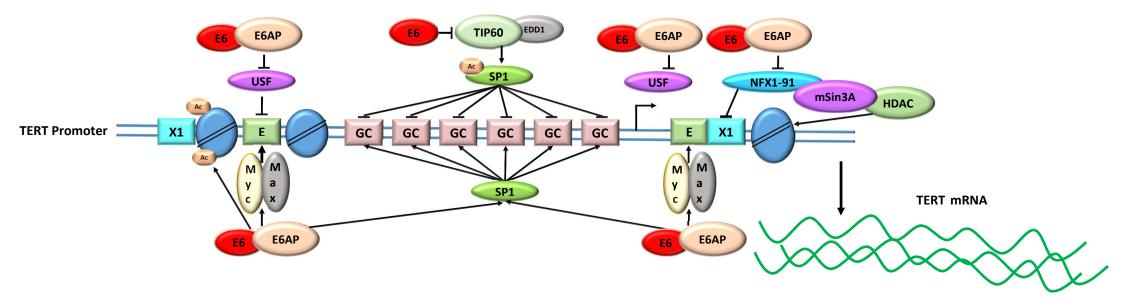
Optimal lenght

- Optimal telomere protection
- Telomere shorten after each replication
- Cells maintain Hayflick limit

Short telomeres

- **Deprotected telomeres**
- Accumulation of DNA damage
- Chromosomal fusions
 - Aberrant TERT activation

Oncoviruses enhance telomerase activity

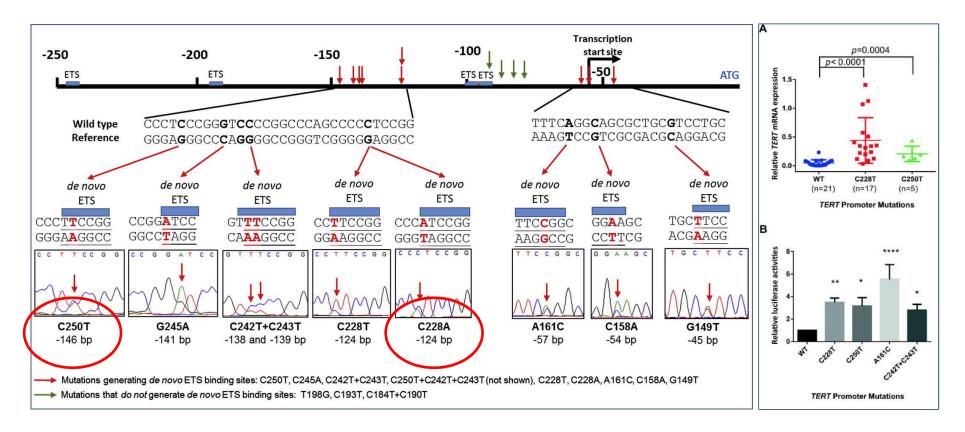

Oncoviruses activate TERT expression

- Several DNA and RNA oncoviruses have the ability to enhance telomerase activity and telomere length and to contribute to the unlimited proliferation and transformation of chronically infected cells.
- Viruses, such as HBV and HPV, can integrate their genomes nearby TERT gene locus causing enhanced expression of TERT.
- Oncoviral proteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, have been demonstrated to contribute to the transcriptional activation of the TERT gene mainly by interacting with negative regulators of TERT transcription

Tornesello et al. Cancers 2022

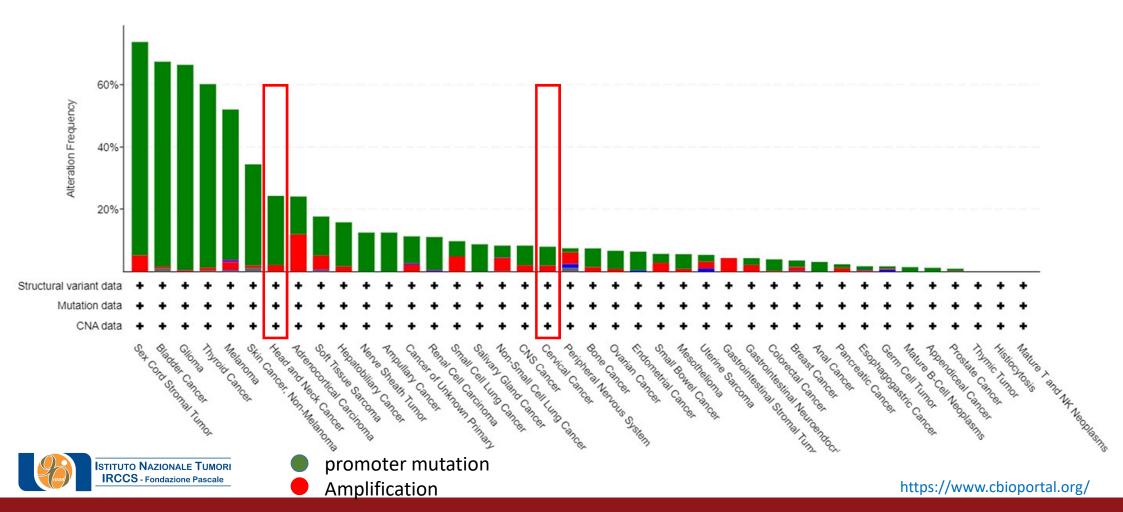
TERT activation by HPV E6

The main strategies adopted by HPV E6 to regulate telomerase activity at transcriptional level relies on the ability of HPV E6/E6AP complex to stabilize MYC/MAX and SP1 transcription activators, to dislocate USF and NFX1-91 transcription repressors, to induce the acetylation of histone H3 and to inhibit TIP60-mediated acetylation of SP1.



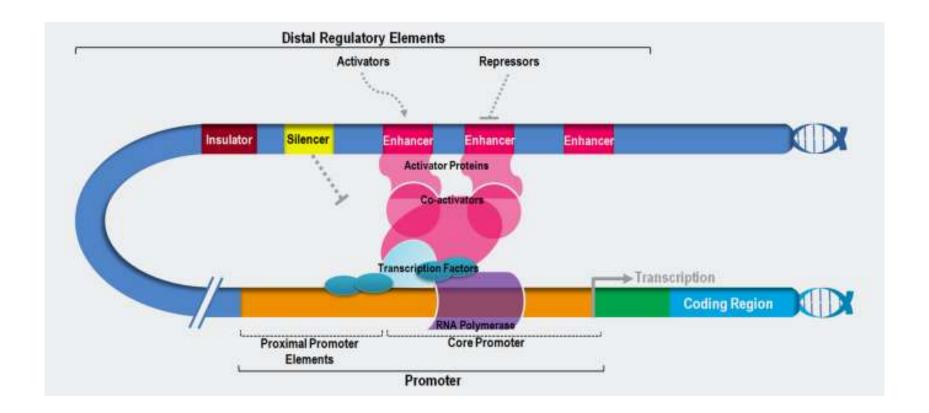
Tornesello et al. Cancers 2022

TERT promoter mutations and telomerase expression


Telomerase reverse transcriptase (TERT) promoter mutations

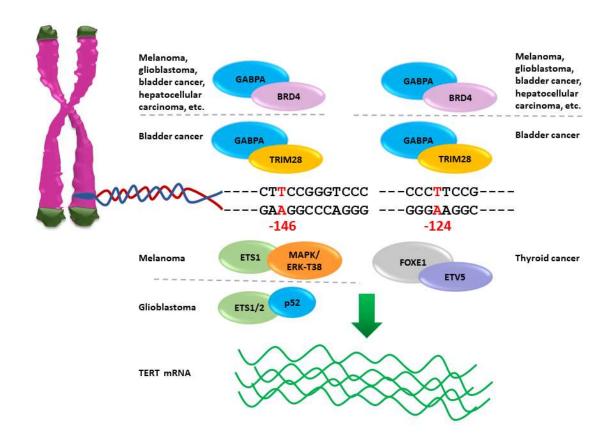
Horn et al. Science 2013, Huang et al. Science 2013

Distribution of TERT promoter mutations by tumour type



Transcription factors and mutant TERT promoter

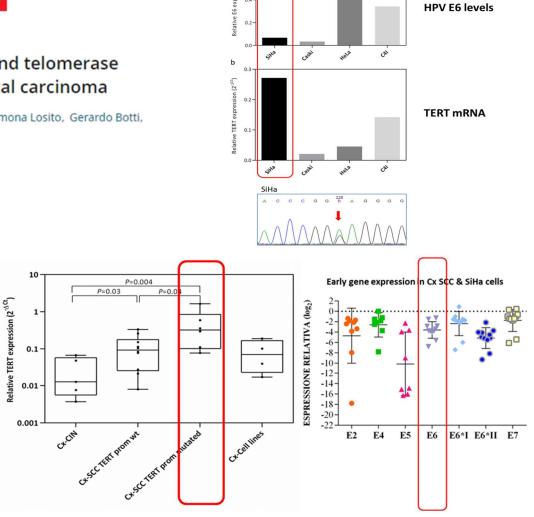
- TERT promoter mutations have been shown to activate telomerase expression through the **creation of de novo 5'-GGAA-3' binding motifs** that are recognized by transcription factors of the E-twenty-six (ETS) family, including the GA-binding proteins alpha and beta (GABPA and GABPB), ETS1 and ETS Variant Transcription Factor 1 (ETV1)
- The transcription factor **GABPA enables the interaction of mutant TERT promoter with a distal region (T-INT1)** located **260 kb upstream TERT ATG start site** and facilitates epigenetic changes that drive TERT gene transcription
- Telomeric factors, such as TRF2, have the ability to interact with and to inhibit TERT promoter. However, mutations in the TERT promoter cause destabilization of G-quadruplex structures and TRF2 displacement resulting in telomerase overexpression in glioblastoma multiforme cells


Altered TERT promoter and other regulatory elements

Kumar et al. Int J Cancer 2017

TERT promoter mutations and novel binding sites for ETS factors

Tornesello et al. Front Cell Dev Biol. 2023



Distinct profiles of *TERT* promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma

Clorinda Annunziata, Francesca Pezzuto, Stefano Greggi, Franco Ionna, Simona Losito, Gerardo Botti, Luigi Buonaguro, Franco M. Buonaguro, Maria Lina Tornesello 🔀

		TERT promoter mutated cases†	%	Effect‡	
Cervic	al SCC (n=101)	22	21.78		
Hot sp	oot mutations				
-12	4 G>A	10	9.90	ETS	
-14	6 G>A	7	6.93	ETS	
Other	mutations				
-10	6 G>A	1	0.99		
-10	6 G>T	1	0.99	KLF5	
-11	1 G>A	1	0.99		
-11	5 G>A	1	0.99	ETS	
-15	1 G>A	1	0.99	ETS/THAP1	
Cervical AC (n=24)		1	4.16		
Other mutations					
-112 G>A		1	4.16		
CIN (n	=62)	1	1.61		
Other	mutations				
-105 G>A		1	1.61	ETS	
Cervical Cell lines (n=4)**		1	25.00		
	ISTITUTO NAZIONALE T	LIMORI			
auni	IRCCS - Fondazione Pa	1	25.00	ETS	

INFECTIOUS CAUSES OF CANCER

Mutations in the telomerase reverse transcriptase promoter and PIK3CA gene are common events in penile squamous cell carcinoma of Italian and Ugandan patients

Noemy Starita¹ | Francesca Pezzuto¹ | Sabrina Sarno² | Nunzia Simona Losito² | Sisto Perdonà³ | Luigi Buonaguro⁴ | Franco M. Buonaguro¹ | Maria Lina Tornesello¹

STARITA ET AL

TABLE 3 Frequency of TERTp and PIK3CA exon 9 mutations in 57 penile carcinoma samples according to the HPV status and patients provenance

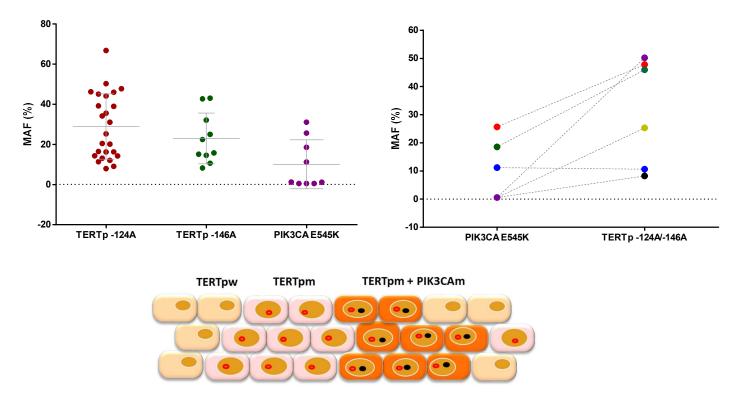
	PIK3CA ex9 mutation (n = 15)	PIK3CA ex9 wild-type (n = 42)	P value
	n (%)	n (%)	
TERTp status			.5093
ERTp mutated	9 (60.0)	21 (50.0)	
-124G>A	5 (33.3)	15 (35.7)	
-146G>A	3 (20.0)	6 (14.3)	
-124G>T	1 (6.7)	0	
TERTp wild-type	6 (40.0)	21 (50.0)	
HPV status			.9499
HPV positive	7 (46.7)	20 (47.6)	
HPV negative	8 (53.3)	22 (52.4)	
Provenance			.0630
Italy	14 (93.3)	29 (69.1)	
Uganda	1 (6.7)	13 (30.9)	

TABLE 1 HPV status, PIK3CA ex9 and TERTp mutations, detected by Sanger sequencing and ddPCR, in DNA samples extracted from penile cancer biopsies


Sample ID ^a	HPV genotype	Tissue biopsy	PIK3CA Sanger	PIK3CA ddPCR	MAF (%)	Number of alleles screened ^b	TERTp Sanger	TERTp ddPCR	MAF (%)	Number of alleles screened ^b
PCU-04	16, 18, 33	Fresh	WT	WT		8529	WT	WT		7283
PCU-05	Neg	Fresh	WT	WT		10 016	WT	WT		9522
PCU-07	6, 16	Fresh	WT	WT		7787	-124A	-124A	66.79	5420
PCU-08	16,18	Fresh	WT	WT		10 758	WT	WT		9614
PCU-09	Neg	Fresh	E545K	E545K	25.68	8072	-124A	-124A	47.81	7402
PCU-10	16	Fresh	WT	WT		7771	WT	WT		5488
PCU-11	16	Fresh	WT	WT		8771	-146A	-146A	6.85	7574
PCU-12	Neg	Fresh	WT	WT		10 350	WT	WT		9541
PCU-13	Neg	Fresh	WT	WT		9330	WT	WT		8922
PCU-15	16	Fresh	WT	WT		10 945	WT	WT		9164
PCU-17	16	Fresh	WT	WT		8609	WT	WT		11 681
PCU-22	16	Fresh	WT	WT		8806	-124A	-124A	38.98	6139
PCU-23	16	Fresh	WT	WT		4016	WT	WT		4462
PCU-24	Neg	Fresh	WT	WT		10 623	-124A	-124A	31.05	8732
PCI-30	16	FFPE	WT	E545K	11.19	1730	WT	-146A	10.62	1601
PCI-31	Neg	FFPE	E545A	WT		551	-124A	-124A	16.31	672
PCI-32	16	FFPE	WT	WT		643	WT	-124A	11.34	485
PCI-33	Neg	FFPE	WT	E545K	1.13	678	WT	WT		741
PCI-34	Neg	FFPE	WT	WT		421	-146A	-146A	42.70	185
PCI-35	18	FFPE	WT	WT		465	WT	WT		171
PCI-36	16	FFPE	Q546R	WT		3040	WT	WT		2393
PCI-37	16	FFPE	E545K	E545K	18.55	1925	-124A	-124A	45.99	368
PCI-3B	16	FFPE	NA	NA			WT	-124A	9.09	294

Starita et al., Int J Cancer 2022

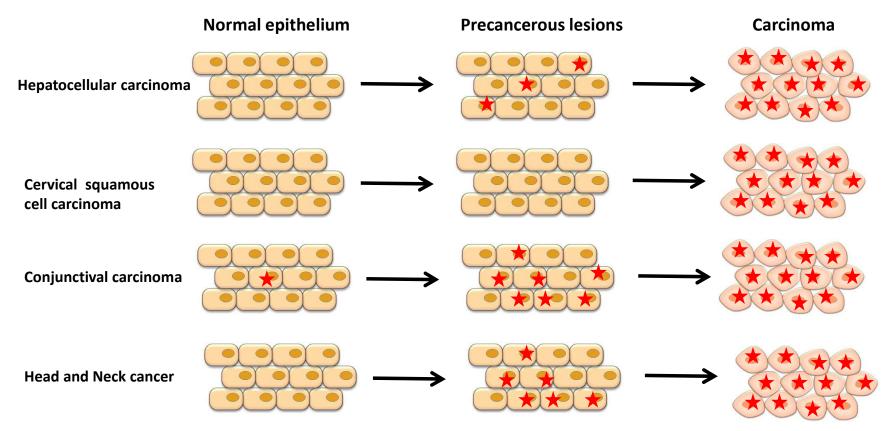
STARITA ET AL.


Ortologous comparison of ddPCR assays TERTp -124A, TERTp -146A and PIK3CA E545K with Sanger sequencing results.

Starita et al., Int J Cancer 2022

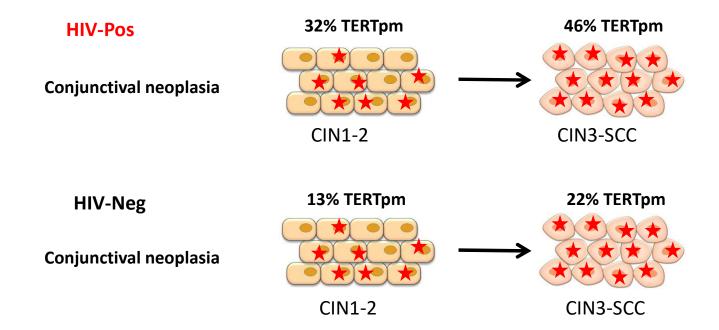
TERT promoter and PIK3CA allel mutation frequencies in penile SCC

- TERTp mutated cases showed high MAF indicating that such mutations are trunk events in penile cancer development.
- In double mutant samples, the lower PIK3CA E545K MAFs compared to TERTp -124A/-146A MAFs indicate that PIK3CA variation is a second event occurring in subclones of TERTp mutated cells


Starita et al., Int J Cancer 2022

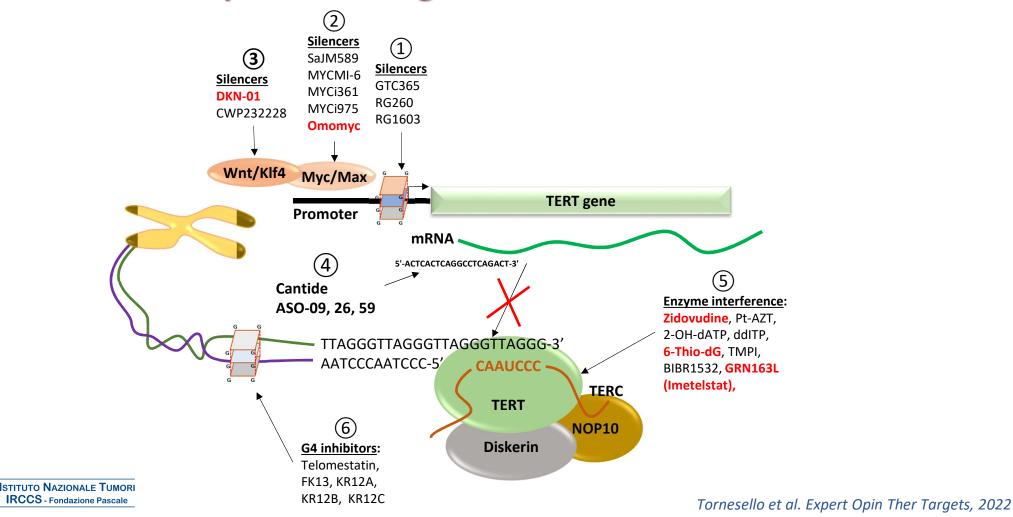
Temporal and spatial acquisition of TERT promoter mutations

- TERT promoter mutations have been defined as early events in some tumours and late events in others, consistent with the possibility that they play multiple oncogenic roles in diverse cancer types
- TERT promoter mutations are **early genetic events** in glioblastoma, melanoma, hepatocellular carcinoma, urothelial bladder cancers, **penile and conjunctival carcinoma**


TERT promoter mutations are early or late events in Cancer

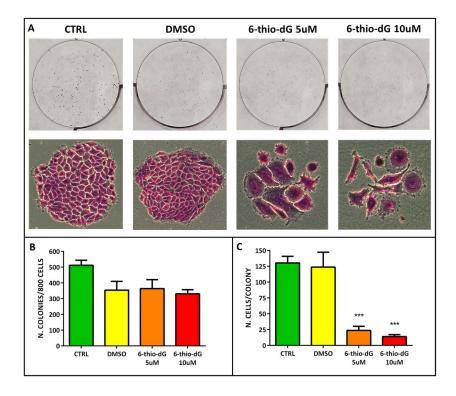
VIRCAN2024

TERT promoter mutations and HIV in conjunctiva I carcinoma



Starita et al., J Tranl Med 2018

Therapeutic strategies to target telomerase



Therapeutic strategies to inhibit telomerase

Colony formation assay with TERTpm SiHa cells

6-Thio-2'-deoxyguanosine (6-thio-dG) is a mimetic of 2'-deoxyguanosine, in which the oxygen atom of guanine is substituted with a sulfur atom. This compound is incorporated into telomeres in a telomerase-dependent manner, which causes immediate crisis in telomerase-positive cells

The Nobel Prize in Physiology or Medicine 2009

© The Nobel Foundation. Photo: U. Montan

Elizabeth H. Blackburn

Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan

Carol W. Greider

Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan

Jack W. Szostak

Prize share: 1/3

The Nobel Prize in Physiology or Medicine 2009 was awarded jointly to Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak "for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase"

ACKNOWLEDGEMENTS

IRCCS - Fondazione Pascal

SC Mol Biol Onc Vir

N Starita

A Cerasuolo

T Pecchillo Cimmino

S Amiranda

AL Tornesello

FM Buonaguro

ML Tornesello

SC Pathology

G Aquino

NS Losito

M Di Bonito

SC Gynecology

C Scaffa

Animal Facility

F Bruzzese

A Luciano

G Palma

Funding Agencies

Biomaterials Unit
P Netti
G Imparato
V De Gregorio

THANK YOU FOR YOUR ATTENTION!