

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences

Laboratory of modeling of immunobiological processes with experimental clinic of common marmosets

Nonhuman primate models for preclinical testing of cancer vaccines

Ilya Gordeychuk

Workshop "IMMUNOTHERAPY OF CANCER"

project "New approach to active immunotherapy of hepatitis c related cancer"LZP-2018/2-0308

Riga Stradins University, Riga, Latvia

13 June 2019

Common marmoset breeding facility

Common marmosets (Callithrix jacchus)

Sharp increase in the use of laboratory marmosets

ANIMAL RESEARCH

U.S. labs clamor for marmosets

Shortage develops as new transgenic models for neurological diseases stoke interest

Advantages and disadvantages of marmosets in biomedical research

Advantage				
Proximity to humans	Genetics, (neuro) anatomy, immunology, physiology, microbiology.			
Biology	Relatively small (300–350 grams) compared with other nonhuman primates (e.g., macaque species), high reproductive efficiency in captivity, lower caging and feeding costs compared with macaques, socially housed			
Conventional housing	Exposure of immune-shaping pathogens from the external milieu (e.g., gut microbiotica and environment and from the internal milieu (e.g., opportunistic infection with herpes viruses such as the marmoset counter parts of Epstein-Barr virus and cytomegalovirus).			
Outbred nature	Comparable genetic heterogeneity to the human population. Wild populations are not endangered.			
Cross-reactivity	Biological therapeutics developed for human diseases e.g., monoclonal antibodies and cytokines, can be assessed for preclinical evaluation of efficacy, safety, and mechanism of action.			
Bone-marrow chimerism	Twins or triplets are immunologically highly similar, and hence can be used in pairs for therapeutics studies. Twin siblings are mutually allotolerant, enabling adoptive transfer of cells between siblings.			
Drug development	Cheaper due to small size, 10- to 20-fold less of an experimental drug is needed compared to macaqu			
Disadvantage				
Costs	Relatively high compared with rodents or other non-rodent species.			
Cross-reactivity	Limited availability of diagnostic reagents such as monoclonal antibodies for flow cytometry and immuno histochemistry.			
Ethical	Are closer to humans compared with rodents, limited possibilities for experimental manipulations (e.g. transgenic experiments).			
Size	Small size, difficult or impossible to perform certain procedures or techniques (e.g., MRI of spinal cord) small volume of blood or organs (e.g., lymph nodes) can be obtained to perform <i>ex vivo</i> experiments.			

Antibody clones for flow cytometry

Published 2001 Wiley-Liss, Inc.[†] DOI 10.1002/cyto.10002 Cytometry 45:294-303 (2001)

An Extensive Monoclonal Antibody Panel for the Phenotyping of Leukocyte Subsets in the Common Marmoset and the Cotton-Top Tamarin

Herbert P.M. Brok, 1* Rebecca J. Hornby, 2,3 Gareth D. Griffiths, 2 Leah A.M. Scott, 2 and Bert A. 't Hart¹

¹Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
²Division of Biology, DERA, CBD Porton Down, Salisbury, United Kingdom
³Institute of Biomedical and Biomedicaler Sciences, University of Portsmouth, Portmouth, United Kingdom

Received 14 March 2001; Revision Received 24 July 2001; Accepted 25 July 2001

New World monkeys are va study human diseases. To do of cells involved in immune cytometry to screen a larg monoclonal antibodies (m with cells of the common m top tamarin. Certain antiger are well conserved. Howeve showed a clear discrepance terns in both species, indica ferences on the epitope leve lution. Epstein-Barr virus-t were shown to be a value B-cell-specific reagents. In

Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (*Callithrix jacchus*)

Berit Neumann, Tingchuan Shi, Li Lin Gan, Antonina Klippert, Maria Daskalaki, Nicole Stolte-Leeb & Christiane Stahl-Hennig

Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany

Keywords

flow cytometry – immunophenotyping – innate and adaptive immunity – New World monkeys

Correspondence

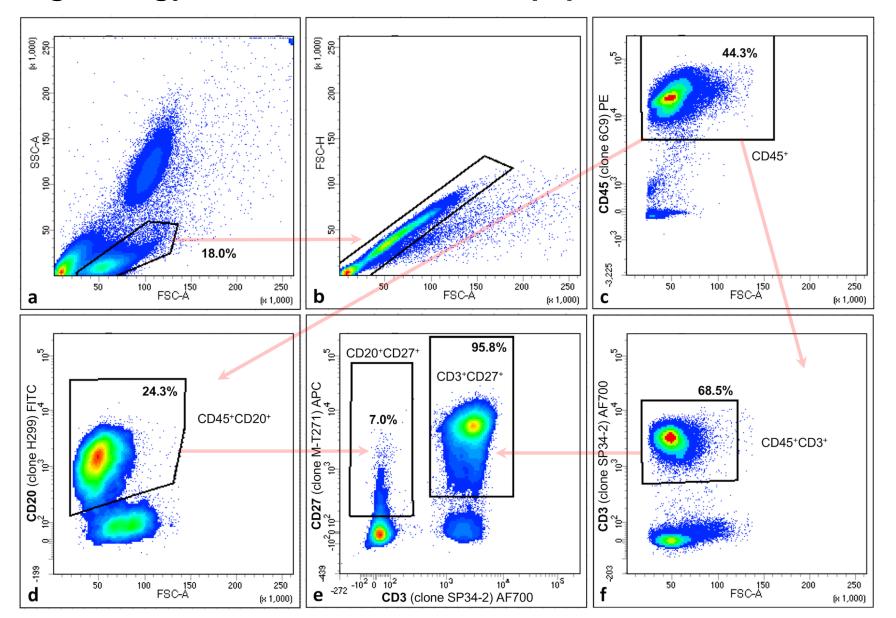
Berit Neumann, Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany. Tel.: 0049-551-3851-286; e-mail: bneumann@dpz.eu

Accepted April 25, 2016.

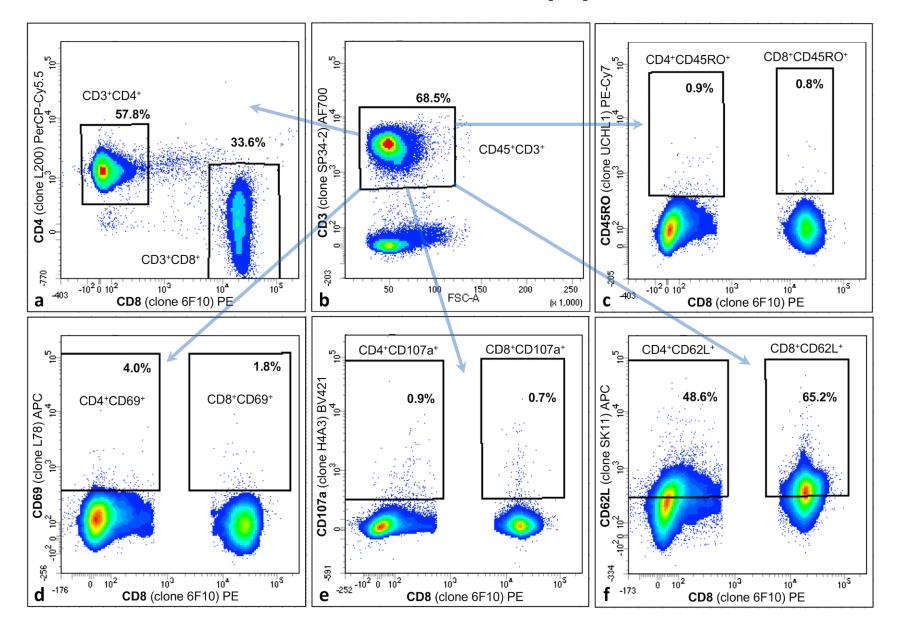
Abstract

Background Common marmosets are extensively used in immunological and pharmacological research, and the usage of methods such as flow cytometry gain increasing importance.

Methods Using multicolor flow cytometry cross-reactivity of monoclonal antibodies with cells of common marmosets was analyzed. Furthermore, frequencies of immune cells and immunological parameters were assessed in healthy common marmosets.

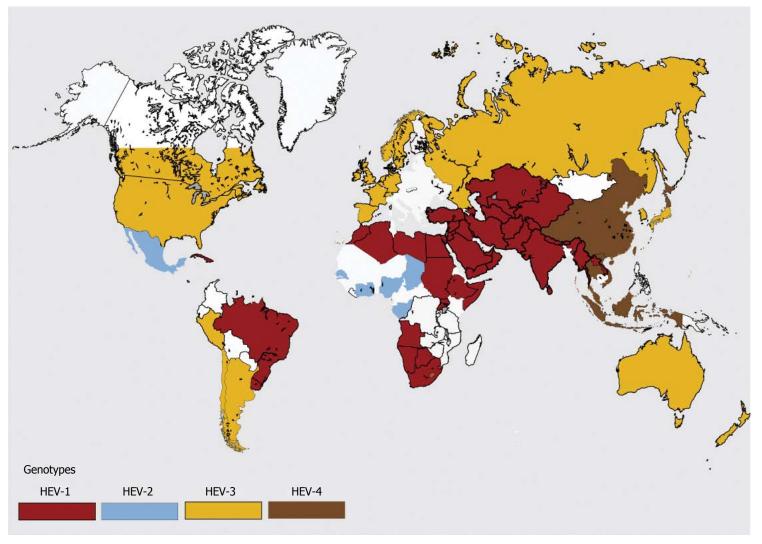

Results A total of 97 clones of monoclonal antibodies raised against CD markers, chemokine receptors, and miscellaneous markers were tested. Additionally, baseline frequencies of different innate and adaptive immune cells as well as certain parameters, such as activation and memory T-cell and B-cell distribution, are provided.

Conclusion Our study gives an extended overview of cross-reactive antibodies for flow cytometric analysis of immune cells as well as baseline values for different immune parameters in healthy common marmosets.


Antibody clones for flow cytometry

Marker	Antibody clone	Fluorochrome	Reactivity	Manufacturer	
CD45	6C9	PE	marmoset	BioLegend	
CD3	SP34-2	Alexa Fluor 700	human	BD	
CD20	H299	FITC	human	Beckman Coulter	
CD4	L200	PerCP-Cy5.5	human	BD	
CD8	6F10	PE	marmoset	BioLegend	
CD69	L78	APC	human	BD	
CD62L	SK11	BV421	human	BD	
CD45RO	UCHL1	PE/Cy7	human	BioLegend	
CD107A	H4A3	BV421	human	BD	
CD27	M-T271	APC	human	BioLegend	

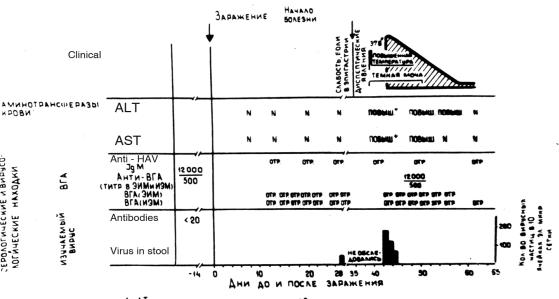
Gating strategy and identification of the populations of T-and B-cells


Identification of T-cell subpopulations

Proportions of reactive peripheral blood cells of naïve CMs

	Marmoset ID, parameter %								Total,		
Parameter	Female					Male				M±σ, %	
	2996	2998	0519	3016	2997	M±σ,	2994	4540	4520	M±σ,	
Age, months	29	29	23	48	25	30.8±10.0	30.0	25.0	25.0	26.7±2.9	29.3±8.0
*CD45+	67.5	64.5	62.3	43.5	43.2	56.2±11.9	42.1	44.3	66.6	51.0±13.6	54.3±11.8
CD45+CD3-CD20+	28.7	32.4	17.7	17.5	20.4	23.3±6.8	22.3	24.3	18.4	21.7±3.0	22.7±5.5
CD45+CD20+CD27+	8.3	11.8	5.9	17	7.9	10.2±4.4	8.9	7.0	4.7	6.9±2.1	8.9±3.9
CD45+CD3+CD20-	62.4	57.6	69.6	74.7	64.4	65.7±6.6	66.5	68.5	76.9	70.6±5.5	67.6±6.3
CD45+CD3+CD27+	93.9	93.2	96.2	98.4	93.2	95.0±2.3	91.8	95.8	94.6	94.1±2.1	94.6±2.1
CD3+CD4-CD8+	39.2	32.7	34.4	40	32.9	35.8±3.5	33.2	33.6	28.5	31.8±2.8	34.3±3.7
CD3+CD8+CD62L+	72.7	81.2	89.3	86.7	51.8	76.3±15.1	76.4	65.2	72.0	71.2±5.6	74.4±12.1
CD3 ⁺ CD8 ⁺ CD69 ⁺	0.9	1.1	1.6	1.9	0.3	1.2±0.6	1.2	1.8	1.0	1.3±0.4	1.2±0.5
CD3 ⁺ CD8 ⁺ CD45RO ⁺	2	2.4	1.8	1.8	0.8	1.8±0.6	2.0	0.8	0.7	1.2±0.7	1.8±0.7
CD3 ⁺ CD8 ⁺ CD107a ⁺	0.9	0.5	0.8	0.5	0	0.5±0.4	0.2	0.7	0.2	0.4±0.3	0.5±0.3
CD3+CD4+CD8-	49.9	57.7	51.2	49.7	57.8	53.3±4.1	55.5	57.8	66.1	59.8±5.6	55.7±5.5
CD3+CD4+CD62L+	47.3	56	73.8	66	43	57.2±12.8	49.1	48.6	47.8	48.5±0.7	54.0±10.7
CD3 ⁺ CD4 ⁺ CD69 ⁺	1.1	2.3	3.8	4.2	1.7	2.6±1.3	2.0	4.0	2.7	2.9±1.0	2.7±1.2
CD3 ⁺ CD4 ⁺ CD45RO ⁺	2	1.7	2.3	2.4	1.1	1.9±0.5**	1.3	0.9	1.0	1.1±0.2**	1.6±0.6
CD3 ⁺ CD4 ⁺ CD107a ⁺	1.2	0.6	1.5	0.9	0.2	0.9±0.5	0.2	0.9	0.4	0.5±0.4	0.7±0.5

Hepatitis E virus worldwide genotype distribution



Hepatitis E virus discovery in a self-infection experiment in 1981

Mikhail S Balayan (1933–2000)

CXEMA PASBUTUR NHOEKUNU

+ A A A T - 3 010 MK MOAD/MHH/A (HOPMA A0 40)
AC A T - 4 165 MK MOAD/MHH/A (HOPMA A0 40)

Non-human primates susceptible to HEV

Rhesus monkeys (Macaca mulatta)

Cynomolgus monkeys (Macaca fascicularis)

Common marmosets (Callithrix jacchus)

The current state of the development of HEV vaccine

- HEV propagates poorly in cell culture no perspectives for inactivated or attenuated vaccine
- HEV capsid protein is a main target for neutralizing antibodies and is a backbone for all HEV prototype vaccines
- The native HEV capsid protein contains conformational epitopes for neutralizing antibodies (C-terminus of the protein, aa 459–606) exposed on the surface of the virion
- At least 11 experimental recombinant vaccines were tested for efficacy in challenge experiments, only two vaccines were brought to the stage of clinical trials in humans
- Only one vaccine (Hecolin, HEV 239) was licensed in China for use in humans
- rHEV vaccine (56 kDA) developed by GlaxoSmithKline did not become commercially available

Common marmoset (Callithrix jacchus) immunization design

Animal ID	Immunization 1	Immunization 2	Immunization 3	Booster immunization	Challenge
	Week 0	Week 3	Week 6	Week 17	Week 25
M1	20 μg/alum	20 μg/alum	20 μg/alum	20 μg/alum	HEV Gt1
M2	20 μg/alum	20 μg/alum	20 μg/alum	20 μg/alum	HEV Gt1
M3	20 μg/alum	20 μg/alum	20 μg/alum	20 μg/alum	HEV Gt3
M4	20 μg/alum	20 μg/alum	20 μg/alum	20 μg/alum	HEV Gt3
M5	alum	alum	alum	alum	HEV Gt1
M6	alum	alum	alum	alum	HEV Gt3

Challenge on week 8 after booster immunization

- Gt1 human HEV, Gt3 swine HEV
- Intravenous inoculation with HEV Gt1 or Gt3, 10⁶ copies/ml
- Sterile 10% fecal suspension
- Inoculum volume: 1 ml (10⁶ HEV RNA copies)
- HEV RNA in feces testing: daily (till week 9 post infection)
- Serum HEV RNA and anti-HEV testing: once weekly till week 9 post infection

HEV RNA detection in feces

	Animal ID (vaccine/challenge)									
Week post infection	M1 (vaccine/ HEV Gt1)	M2 (vaccine/ HEV Gt1)	M1 (vaccine/ HEV Gt3)	M1 (vaccine/ HEV Gt3)	M1 (placebo/ HEV Gt1)	M1 (placebo/ HEV Gt3)				
0	neg	neg	neg	neg	neg	neg				
1	neg	neg	neg	neg	neg	neg				
2	neg	neg	neg	neg	pos	pos				
3	neg	neg	neg	neg	pos	pos				
4	neg	neg	neg	neg	pos	neg				
5	neg	neg	neg	neg	pos	neg				
6	neg	neg	neg	neg	pos	neg				
7	neg	neg	neg	neg	neg	neg				
8	neg	neg	neg	neg	neg	neg				
9	neg	neg	neg	neg	neg	neg				

Conclusion

With the newly developed methods marmosets have become one of the most widely used and effective models for fundamental research and preclinical testing of immunobiological drugs

Acknowledgements

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences, Moscow, Russia T Gulyaeva, S Gulyaev, E Pankova, A Moroz, Y Khubiev, A Chumakov

Research Center at Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare, Moscow, Russia

K Kyuregyan, I Potemkin, A Karlsen, O Isaeva, M Mikhailov

Gamaleya Research Center for Epidemiology and Microbiology, Moscow, Russia *A Tukhvatulin, D Logunov*

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

M Isaguliants, S Petkov

Thank you for your attention!