

IEGULDĪJUMS TAVĀ NĀKOTNĒ

MORPHOLOGY OF NON-SPECIFIED ENCEPHALOPATHY IN CASES OF POLYMERASE CHAIN REACTION PROVED PRESENCE OF HUMAN HERPESVIRUS-6

Silvija Roga¹, Ilze Strumfa¹, Solvita Kuleznova¹, Svetlana Chapenko², Santa Rasa², Modra Murovska²

¹ Riga Stradiņš University, Department of Pathology, Riga, Latvia
² A.Kirchenstein Institute of Microbiology and Virology, Riga Stradiņš University, Riga, Latvia

BACKGROUND

The morphology of non-specified encephalopathy is a complex medical problem. Human herpesvirus-6 (HHV-6) infection can be discussed as a predisposing factor. Nearly 100% of us have been infected with the HHV-6 virus since early childhood and have antibodies to it, and at least 30% of us have small but detectable levels of latent virus in our blood (Alvarez-Lafuente 2002& Clark 1996), so the relevant questions are not *whether* you have the virus, but rather how *much* of the virus do you have, and is it *active* or *latent*? **The aim** of the present study was to investigate the presence of beta HHV-6 in non-specified adult encephalopathy cases.

METHODS

The blood, meninges and brain tissue were obtained in adult (aged 42-74 years) autopsies including 21 cases with encephalopathy and 23 cases in the control group. Tissues were submitted for routine histology including haematoxylineosin stain. The presence of HHV-6 genome (DNA) was analysed by nested polymerase chain reaction (nPCR), HHV-6 variants by restriction endonuclease analysis.

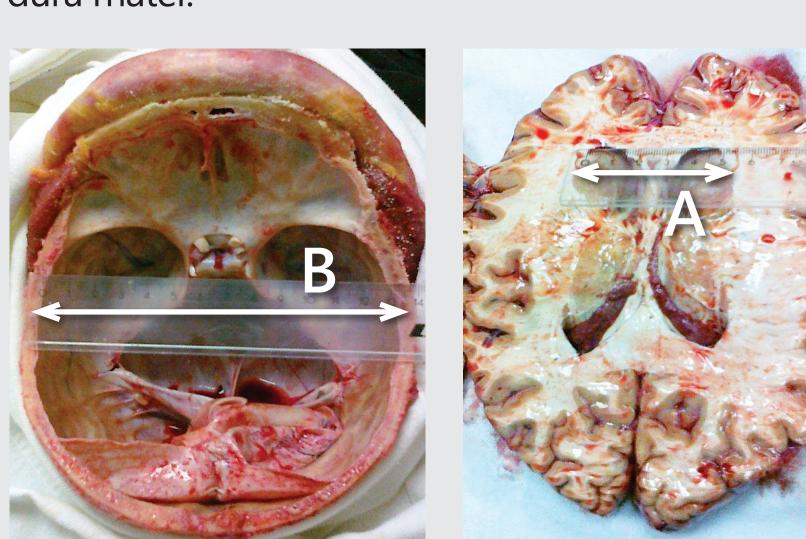
Criteria for taking materials of cerebral membrane – pia mater and dura mater and tissue – brain materials.

Basic group. Turn-on mechanism: Dilation of side ventricles and 3rd ventricle.

Turn-off mechanism: Haemorrhagic or ischemic changes (infarctions) in the cerebra, haemorrhagic changes in cerebral membrane.

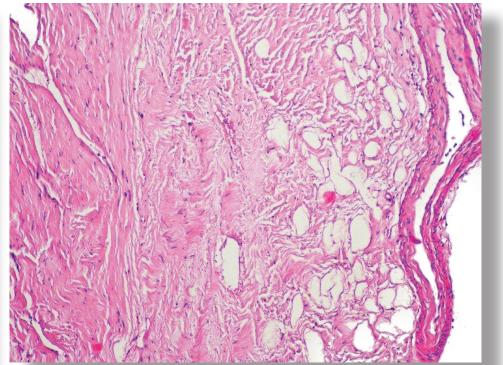
Control group. Turn-on mechanism: Macroscopically unchanged cerebra-brain, cerebral oedema is permissible.

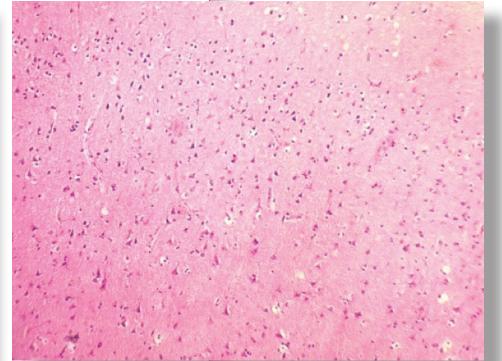
Turn-off mechanism: Dilation of side ventricles and 3rd ventricle. Haemorrhagic or ischemic changes (infarctions) in the cerebra-brain, haemorrhagic changes in cerebral membrane - pia mater and dura mater.

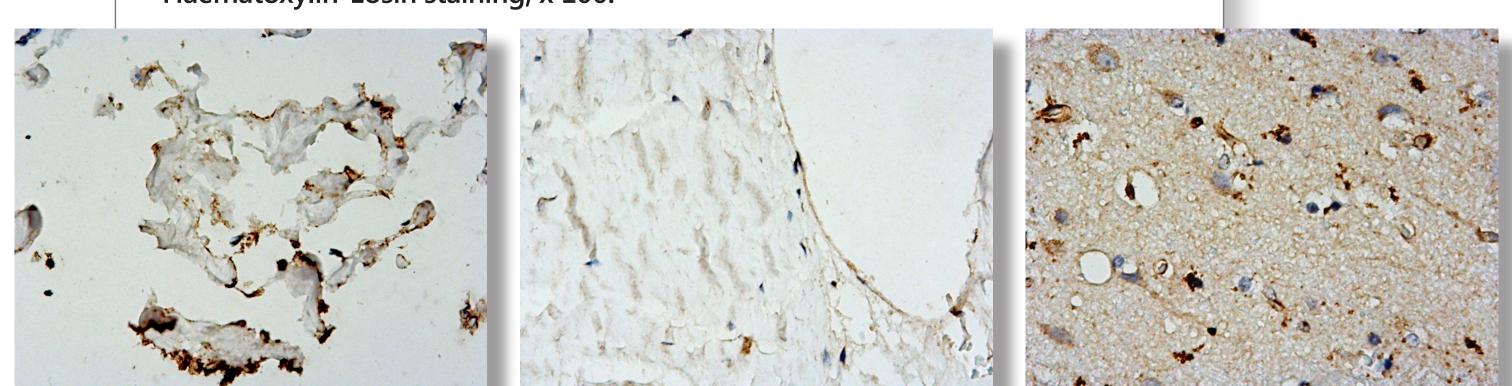


Brain macropreparation – sulci et gyri facies superolateralis cerberi et pia mater – oedema pia mater.

Brains sulcus with no greater than 3 mm.


The following criteria were used for the confirmation or refusal of macroscopic cerebral autoptat encephalopatia in the basic and the control group:


- Evans index (EI) ratio of the transverse diameter of the anterior horns of the lateral ventricles to the greatest internal diameter of the skull, A/B no greater than 30%;
- Cella median index ratio of the distance between the lateral ventricle to the greatest outer diameter of the skull, C/B no greater than 25%;
- Third ventricle cross section no greater than 8 mm;
- Brain sulcus width no greater than 3 mm;
- Brain ventricle norm variations no greater than 15%.



Measurement of Evans index calculated as the maximal width of the frontal horns (A) maximal width of the inner skull (B). Cella mediana index – ratio of the distance between the lateral ventricle (C) to the greatest outer diameter of the skull (B). Brain macropreparation – horizontal cut ventriculi lateralis, ventriculi tertius, substantia alba, substantia nigra, nuclei thalami, measurement of lateral ventricle for the diagnostics of encephalopathy (Evans, Cella median index and Third ventricle cross section).

Fig. 1-3 Pia mater, dura mater and brain microscopy: pia mater oedema, blood vessel full-bloodedness; brain oedema, pericellular and perivascular oedema. Haematoxylin-Eosin staining, x 100.

Fig. 4-6 Immunohistochemistry with HHV-6 antibody in pia mater, dura mater and brain. HHV-6 caused by pathogenic effect. En vision method 400 x.

RESULTS

- The gross and microscopic structure did not reveal any specific changes.
- In the encephalopathy group, HHV-6 DNA sequence was found in meningeal tissues (16/21 cases; p=0.0036), in brain tissues (15/21 cases; p=0.0007), and both in brain and meningeal tissues (10/21 cases; p=0.0174).
- In the control group, the viral DNA was identified in meningeal tissues (7/23 cases), in brain tissues (4/23 cases), both in brain and meningeal tissues (3/23 cases).
- HHV-6B variant was detected in all cases.
- * Comparison of group medians using Mann-Whitney U test resulted in a significant difference (p<0.05).

CONCLUSION

On the basis of the present study it can be concluded that HHV-6 is a pathogenic factor that can predispose to encephalopathy.