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Abstract 

Sapropel, an organic-rich freshwater sediment, has long been used in traditional 

medicine and cosmetics, however its therapeutic potential remains underexplored by modern 

science. Nevertheless, the use of sapropel in these traditional ways presents some practical 

challenges, like requirement for specialised facilities and large quantities of fresh sapropel 

sediments. Sapropel application, particularly in the form of mud baths, necessitates dedicated 

spaces equipped for the storage, preparation, application, and removal of the mud. This 

Doctoral Thesis investigates sapropel as a source of bioactive compounds and its integration 

into sodium carboxymethylcellulose (Na-CMC) hydrogels for potential biomedical and 

cosmetic applications. 

The study begins with a comprehensive analysis of sapropel’s origin, structure, and 

biologically active constituents, particularly humic and fulvic acids. A critical review of 

extraction methodologies was conducted, comparing solid–liquid, ultrasound-assisted, and 

supercritical fluid extraction techniques. Emphasis was placed on establishing quality criteria 

for sapropel extracts suitable for medical use, addressing the current lack of standardised 

protocols. 

Sapropel samples from Latvian freshwater lakes were systematically collected,  

layer-wise characterised, and processed to obtain extracts. These were analysed for total organic 

carbon, humic and fulvic acid content, polyphenol levels, antioxidant status, trace elements, 

and microbiological indicators. Selected extracts demonstrated significant antioxidant activity 

and promoted cell regeneration in vitro, particularly in fibroblast and keratinocyte models; 

however cytotoxic effects were observed at prolonged, high concentrations. 

In the final phase, the functional incorporation of sapropel extracts into Na-CMC-based 

hydrogels was achieved. Eight formulations were developed and evaluated for physicochemical 

properties, stability, pH, and viscosity under various conditions. Hydrogels containing sapropel 

extract exhibited favourable stability, a biocompatible pH range, and maintained organoleptic 

qualities, making them suitable as a platform for topical application. 

This research supports the potential of sapropel as a valuable natural resource for 

developing bioactive formulations. The results contribute to the scientific foundation for its 

evidence-based use in dermal therapeutics and cosmetics, and open avenues for further product 

development based on local natural resources. 

Keywords: Sapropel; hydrogel; antioxidants; fulvic acid; humic acid; sapropel extract; 

sodium carboxymethylcellulose (Na-CMC); pharmaceuticals; natural compounds; polyacids. 
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Anotācija 

Sapropeļa izpēte un tā integrācija  
bioaktīvos hidrogelos ar  

nātrija karboksimetilcelulozi:  
īpašību analīze un praktiskais potenciāls 

Sapropelis, kas ir ar organiskām vielām bagāts saldūdens nogulums, jau izsenis tiek 

izmantots tradicionālajā medicīnā un kosmētikā, tomēr tā ārstniecisko potenciālu mūsdienu 

zinātne joprojām nav pietiekami izpētījusi. Sapropeļa izmantošana tradicionālajos veidos ir 

nepraktiska, it īpaši sapropeļa izmantošana dubļu vannās. Šīm procedūrām ir nepieciešamas 

speciāli aprīkotas telpas, kurās var uzglabāt, sagatavot, uzklāt un noņemt sapropeli, kā arī šīm 

procedūrām nepieciešams liels svaiga sapropeļa daudzums. Šajā promocijas darbā tiek pētīts 

sapropelis kā bioloģiski aktīvo savienojumu avots un tā ekstraktu integrācija nātrija 

karboksimetilcelulozes (Na-CMC) hidrogelos potenciālai lietošanai medicīnā un kosmētikā. 

Pētījums sākās ar visaptverošu sapropeļa izcelsmes, struktūras un bioloģiski aktīvo 

sastāvdaļu, īpaši humīnskābju un fulvīnskābju, analīzi. Tika veikts ekstrakcijas metožu un 

procedūru pārskats, salīdzinot pieejamos datus par cietās–šķidrās fāzes, ultraskaņas un 

superkritiskā šķidruma ekstrakcijas metodēm. Uzsvars likts uz medicīniskai lietošanai 

piemērotu sapropeļa ekstraktu kvalitātes kritēriju noteikšanu, risinot pašreizējo standartizēto 

protokolu trūkumu.  

Sapropeļa paraugi no Latvijas saldūdens ezeriem tika sistemātiski savākti, veikta ezeru, 

sapropeļa nogulumu un slāņu atšķirību izpēte un noteikts piesārņojuma līmenis, mikroelementi 

un mikrobioloģiskie indikatori. Visi paraugi tika apstrādāti pēc vienotas metodes un no tiem 

iegūti ekstrakti. Ekstraktos tika analizēts kopējais organiskā oglekļa, humīnskābju un 

fulvīnskābes saturs, polifenolu līmenis, antioksidantu statuss. Izvēlētie ekstrakti uzrādīja 

nozīmīgu antioksidanta aktivitāti un veicināja šūnu reģenerāciju in vitro testos, īpaši fibroblastu 

un keratinocītu modeļos, lai gan ilgstoši augstās ekstrakta koncentrācijās tika novērota 

citotoksiska iedarbība.  

Noslēgumā tika panākta sapropeļa ekstraktu funkcionāla iekļaušana Na-CMC bāzes 

hidrogelos. Tika izstrādāti astoņi sastāvi un novērtētas to fizikāli ķīmiskās īpašības, stabilitāte, 

pH un viskozitāte. Sapropeļa ekstraktu saturošie hidrogeli uzrādīja atbilstošu stabilitāti pēc 

izturēšanas stresa apstākļos, tiem bija ar ādas pH līmeni bioloģiski saderīgs pH diapazons, un 

tie saglabāja organoleptiskās īpašības, padarot tos piemērotus kā zāļu formu lokālai lietošanai 

uz ādas. 
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Uz pierādījumiem balstītie rezultāti sniedz zinātnisku pamatu hidrogelu ar sapropeļa 

ekstraktu lietošanai dermatoloģijā un kosmētikā, kā arī paver iespējas turpmākai produktu 

izstrādei, izmantojot vietējos dabas resursus. 

Atslēgvārdi: sapropelis; hidrogels; antioksidanti; fulvīnskābe; humīnskābe; sapropeļa 

ekstrakts; nātrija karboksimetilceluloze (Na-CMC); farmaceitiskie līdzekļi; dabiskie 

savienojumi; poliskābes. 
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ISO International Standard Organisation  
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UAE Ultrasound-assisted Extraction 
SFE Supercritical Fluid Extraction 
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HaCaT Human Adult Low-calcium High-temperature Keratinocytes 
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UV Ultraviolet Light  
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Introduction 

The inherent human desire to maintain health, enhance beauty, and combat illnesses is 

a timeless pursuit. Dating back to the 5th century BC, ancient Greek intellectuals like Herodotus 

(484–425 BC) pioneered the therapeutic use of mineral waters. Hippocrates (460–370 BC), 

widely regarded as the father of medicine, also documented the healing properties of saltwater 

in his writings. 

In the 19th century, balneology, a new scientific discipline focusing on the therapeutic 

use of mineral and thermal waters and mud, emerged thanks to the work of English doctor  

J. Currie and Austrian doctor V. Priessnitz, the founder of modern hydrotherapy. Balneology 

aims to improve health and treat various ailments using these natural resources. Between  

the 17th and 19th centuries, mud therapy experienced a surge in popularity across Europe, 

coinciding with the rapid advancement of balneology. This period saw the establishment of 

balneological clinics in several countries, including Germany, France, Italy, Austria, and 

Romania. 

Review by H. Routh (Routh, 1996) describe numerous experiments by various scientist 

to understand the therapeutic potential of peloids, mud and mineral waters. These investigations 

focused on understanding how different factors influenced the effectiveness of these treatments. 

Review paper on thermal muds by Veniale and colleagues (Veniale et al., 2007)   found out that 

temperature fluctuation from during application, duration of application periods and chemical 

composition, particularly the levels of sulphur and nitrous oxides, play the key role in  

the treatments. The reviews highlight that these experiments aimed to refine the application of 

mud and mineral water therapies for optimal therapeutic benefit. Mud remedies also gained 

popularity in cosmetology and cosmetic surgery of the time, with mud being used to speed up 

the regeneration and renewal of skin. 

In the early 20th century, hydrotherapy was increasingly used alongside other therapies 

to enhance patient health. These complementary therapies included: Peloidal therapy  

(mud therapy), massage, iontophoresis, phonophoresis physiotherapy, physical exercise.  

This combined approach proved effective in addressing a range of health issues, notably – 

rheumatological disorders, osteoarthritis, fibromyalgia, spondylosis, various musculoskeletal 

disorders. 

While muds, mineral waters and peloids, including sapropel, have a long history of use, 

the scientific evidence supporting their effectiveness remains an area of ongoing research.  

The growing interest in non-pharmaceutical medical treatments has highlighted the need for 

robust scientific evidence supporting the health benefits of sapropel to promote the safe and 

effective use of sapropel in medicine and cosmetics. This research should focus on establishing 
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a strong evidence base for its applications, especially in balneology. By doing so, the use of 

sapropel, a locally sourced natural resource, can be expanded in healthcare and medical 

cosmetics. 

While sapropel might appear as a mysterious substance hidden in the depths of lakes, 

seas and swamps, it is a valuable material with a long history of use in health improvement and 

treatments. Found commonly in the lakebeds, Latvian sapropel is a fine-graded sediment rich 

in organic matter that is produced by sedimentation and transformation of residues from aquatic 

plants and various living organisms together with mineral particles. 

One of the most notable features of sapropel is its high content of humic substances 

(HSs), specifically humic acid (HA) and fulvic acid (FA). These acids are believed to be 

responsible for many of the health benefits associated with sapropel, including antioxidant,  

anti-inflammatory, and antibacterial effects. Latvian freshwater sapropel is particularly 

interesting due to its high concentration of HA and FA, showing promise for use in 

pharmaceutical and cosmetic products. 

Traditionally, sapropel is used therapeutically in two main ways: thermal mud baths and 

direct application to the skin. A typical mud bath involves adding 1 kg of sapropel to 10 L of 

water, maintaining a temperature of 37°C, and having the patient soak for 15–20 minutes.  

This method has shown very positive results in treating skin conditions like eczema and 

dermatitis, as well as hand osteoarthritis. Handling large quantities – traditional sapropel 

applications often require significant amounts of the material, which can be cumbersome to 

manage. The process of storing, applying, and cleaning up after sapropel treatments can be 

labour-intensive and potentially messy, making it challenging to perform in settings more 

convenient for the patient, such as their homes. This limits treatment to specific locations like 

balneotherapy centres, clinics or sanatoriums, which might not be easily accessible to  

all patients. 

These challenges point to the need for alternative, user-friendly delivery systems for 

sapropel, especially its bioactive elements like HA and FA. One potential solution is  

the development of stable, water-soluble hydrogels containing sapropel extracts. Such 

formulations could make therapeutic applications easier, manageable and more accessible to 

patients. Overcoming these practical obstacles is essential for unlocking sapropel’s full 

therapeutic potential and ensuring its safe, effective use in health and cosmetic products. 
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Aim of the Thesis 
To investigate the potential of sapropel and its extracts for incorporation into 

carboxymethylcellulose-based hydrogels, with the goal of further developing innovative, 

biologically derived materials for medical applications. 

Objectives of the Thesis 
The following objectives are set to reach the aim of the Doctoral Thesis: 

1 Collect and analyse information on sapropel resources available in Latvia, including 

acquisition methods, legal regulations, and potential areas of application. 

2 Conduct a quality assessment of sapropel, identifying impurities and potential 

contaminants such as heavy metals and pesticides. 

3 Evaluate methods for obtaining sapropel extracts and assess their potential 

therapeutic effects. 

4 Develop sapropel-enriched sodium carboxymethylcellulose hydrogel systems. 

5 Conduct stability and persistence tests on the developed hydrogels  

6 Perform physical-chemical and persistence tests on the resulting hydrogel and 

assess their practical applicability in medical contexts. 

Hypothesis of the Thesis 
1. Sapropel extract demonstrates effective compatibility with carboxymethyl cellulose 

hydrogel, enhancing its potential applications in medical formulations. 

Novelty of the Thesis 
This Thesis explores a previously underutilised natural resource - Latvian sapropel –  

for the development of modern biomedical applications. While sapropel has traditionally been 

used in balneology, its integration into water-soluble hydrogel systems based on 

carboxymethylcellulose sodium salt represents a novel and promising approach. The research 

introduces a new method of delivering the bioactive components of sapropel in a controlled, 

stable, and more accessible form, potentially overcoming the limitations of traditional mud 

therapy. Additionally, the study contributes new data on sapropel’s composition, safety, and 

therapeutic potential, offering a scientifically grounded foundation for its incorporation in 

innovative medical and cosmetic products. In addition, the Thesis explores novel formulations 

of carboxymethylcellulose-based hydrogels, examining their stability and potential for medical 

applications. 
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Discussion 

Sapropel: A Resource for Health and Beauty 
Sapropel is a rich source of antioxidant compounds such as polyphenols, sulphated 

polysaccharides, carotenoids, humic and fulvic acids and many other compounds. Sapropel is 

a fine-graded organic sediment found in freshwater and saltwater resorts that is produced by 

sedimentation and transformation of residues from aquatic plants and various living organisms 

together with mineral particles (Stankevica et al., 2016). It is considered a partly renewable 

resource and literature suggests potential for a wide range of therapeutic applications and a long 

history of use in traditional medicine and cosmetology, specialty within the field of balneology. 

The accumulation of sapropel began following the last ice age, estimated to have 

occurred around 12,000 to 15,000 years ago, with notable deposits forming during the Holocene 

period. It is believed that the formation process includes the sedimentation of biomass from  

the lake or sea and, on occasion, the input of organic matter from rivers flowing into the water 

resorts. Sapropel has a complex structure influenced by the variety of organisms and 

compounds involved in its creation. Its colloidal nature allows it to hold a significant quantity 

of water (Stankevica & Klavins, 2014; Vanadziņš et al., 2022). Freshwater lakes in Latvia can 

possibly contain both sapropel and peat mud. The primary difference between them lays in their 

finer structure, acidity, content of organic and humic substances, and the types of  

sediment-forming organisms. 

There are multiple theories about how sapropel develops. A popular theory suggests that 

it mainly consists of three types of components: mineral substances of allochthonous origin, 

inorganic compounds of biogenic origin, and organic materials, which include remnants of 

plants and small aquatic creatures (Stankevica & Klavins, 2014; Vanadziņš et al., 2022). 

The historical usage of Sapropel has been traced back to ancient Greece and is connected 

to the use of mineral waters and muds that lead to the subsequent development of balneology 

in Europe. This demonstrates long-standing practice of natural substances like sapropel usage 

in the therapeutic application, predating modern pharmaceutical medicine. 

There is documented history of sapropel being used for skin ailments such as eczema 

and dermatitis, typically in the form of creams or patches that do not dissolve in water  

(Dolmaa et al., 2011; Drobnik & Stebel, 2020; Pavlovska et al., 2020; Sarlaki et al., 2024; 

Vanadziņš et al., 2022). This naturally occurring sapropel used in balneology is primarily 

composed of humic substances (HSs) and non-humic compounds, both of which have shown 

biological activity (Jarukas et al., 2021; Klavina et al., 2020; Platonova & Adeeva, 2015). 

Humic substances are divided into four types: humic acid (HA), hymatomelanic acid (HMA), 

fulvic acid (FA), and humin and were more discussed in the article “Freshwater Sapropel: 
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Biologically Active Components and Methods of Extraction” and will be discussed more in  

the upcoming chapters. 

Additionally, sapropel contains water-soluble vitamins, such as ascorbic acid (C), 

thiamine (B1), riboflavin (B2), pantothenic acid (B5), pyridoxine (B6), folic acid (B9), and 

cyanocobalamin (B12), along with fat-soluble vitamins like vitamin D and tocopherol (E) 

(Klavina et al., 2020; Kļaviņa et al., 2024; Pavlovska et al., 2020; Stankevica & Klavins, 2014; 

Vanadziņš et al., 2022).Vitamin B12, which is produced by certain bacteria and blue-green 

algae, is particularly important due to its role in blood formation, the metabolism of amino 

acids, and nucleic acid synthesis (Luhila et al., 2022). 

The article “Sapropel – Mining Characteristics and Potential Use in Medicine” points 

to several potential mechanisms underlying sapropel’s effects. Healing mud and peat that 

contain sapropel are primarily employed as external treatments (Celik Karakaya et al., 2010; 

Centini et al., 2015; Fioravanti et al., 2014; Gerencser et al., 2010; Glavas et al., 2017; Odabasi 

et al., 2007; Tserenpil et al., 2010; Veniale et al., 2007). One of the main properties is high heat 

capacity and low heat transfer. They are clearly identified as significant contributors to its 

therapeutic action, facilitating deep tissue heating and influencing circulation and metabolism 

(Centini et al., 2015; Glavas et al., 2017; L. Ji et al., 2018; Tateo et al., 2009). Sapropel’s high 

thermal capacity and low heat conductivity allow it to retain heat for extended periods and 

transfer it slowly to tissues. This gentle and deep heat penetration can improve blood 

circulation, relax muscles, and reduce pain (Balciunas et al., 2016; Centini et al., 2015; Veniale 

et al., 2007). Sapropel applications can stimulate microcirculation in the skin and muscles, 

improving oxygen supply and nutrient delivery to tissues (Kļaviņa et al., 2024; Pavlovska  

et al., 2020; Vanadziņš et al., 2022). 

The chemical composition, including humic substances, vitamins, and minerals, is also 

considered crucial, with potential for dermal penetration and various biological activities like 

anti-oxidation and chelation. Sapropel’s fine texture and colloidal structure facilitate  

the penetration of its biologically active components into the skin and deeper tissues.  

These components, such as humic substances – humic and fulvic acid, vitamins, and amino 

acids exert various therapeutic effects at the cellular level (Pavlovska et al., 2020; Vanadziņš  

et al., 2022). Humic and fulvic acids found in sapropel exhibit antioxidant properties, protecting 

cells from damage caused by free radicals (Klavina et al., 2019, 2020). Antioxidants play  

a crucial role in preventing chronic diseases, reducing inflammation, and slowing down aging 

processes. A Bellometti et. al. (2000) research that involved 37 arthritis patients found that 

sapropel baths and other type of mud baths had positive effects both on homeostasis of cartilage 

and reduction of inflammation, reducing values of NO and myeloperoxidase, while there was 
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no correlation in increase of GSH peroxidase (Bellometti et al., 2000). Research suggest that 

sapropel can modulate the immune system, enhancing its ability to fight infections and reduce 

inflammation. It can stimulate the activity of phagocytes, cells that engulf and destroy harmful 

microorganisms, thereby contributing to tissue regeneration and overall immune health 

(Bellometti et al., 1996, 2000, 2002). 

Furthermore, the microbial community within sapropel is not simply passive but 

actively participates in the formation of biologically active compounds and contributes to 

antimicrobial properties. Many authors describe Sapropel’s antimicrobial activity against  

a range of bacteria and fungi. Suraganova et.al. (2014) in her research describes more sanitary 

and microbiology properties of sapropel in the Lake Kossor, Akimzhanova et.al. (2024) and 

Antonelli and Donelli (2018) in their research suggest that this activity is attributed to  

the presence of various microorganisms that produce antibiotics and other antimicrobial 

compounds (Akimzhanova et al., 2024; Antonelli & Donelli, 2018; Suraganova et al., 2014). 

Sapropel’s antimicrobial properties can contribute to faster wound healing, reduce 

inflammation, and combat skin infections (Akimzhanova et al., 2024; Antonelli & Donelli, 

2018; Pavlovska et al., 2020; Suárez Muñoz et al., 2015; Suraganova et al., 2014; Vanadziņš  

et al., 2022). 

Sapropel can be effective in treating a variety of skin conditions, such as psoriasis, 

eczema, acne, and wounds. Its antimicrobial, anti-inflammatory, and regenerative properties 

contribute to its efficacy in these applications. Sapropel’s thermal and anti-inflammatory 

properties make it beneficial for treating various musculoskeletal conditions, including arthritis, 

osteoarthritis, muscle pain, and joint stiffness. Enhanced microcirculation can promote tissue 

regeneration, reduce swelling, and support overall healing processes (Centini et al., 2015; 

Fioravanti et al., 2014; Gerencser et al., 2010; Odabasi et al., 2007; Tserenpil et al., 2010). 

During literature research many articles mentioned potential benefits of sapropel in 

treating conditions like diabetes, cardiovascular diseases, and respiratory disorders.  

The exchange between these thermal, chemical, and biological factors accounts for the observed 

effects on tissue regeneration, inflammation, and immune function. Nevertheless, further 

studies are needed to confirm these effects and establish optimal treatment protocols  

(Vanadziņš et al., 2022). 

Typically, sapropel is applied through thermal mud baths or external applications.  

The bath is prepared for 15–20 minutes with a water temperature of 37 °C and a sapropel 

concentration of 1 kg per 10 L of water. Notable improvements were seen in patients 

undergoing treatment for eczema, dermatitis, and hand osteoarthritis (Fioravanti et al., 2014; 

Fortunati et al., 2016; Veniale et al., 2007). However, the use of sapropel has certain constraints 
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due to its nature; it necessitates stationary facilities, such as baths or specially designed areas 

where sapropel is applied to patients. A relatively large volume of sapropel is needed for 

external procedures, which presents challenges for storage, application, and disposal, making it 

difficult to carry out these treatments in locations convenient for patients (Fioravanti et al., 

2014; Odabasi et al., 2007; Tateo et al., 2009; Rensburg van, 2015; Vanadziņš et al., 2022; 

Veniale et al., 2007). 

However, the literature review has proven wide usage possibilities, the precise 

mechanisms of action are not yet fully clear, and much of the research has been fragmented, 

lacking modern, systematic investigation. This highlights a gap between traditional practice and 

robust scientific evidence. While review by Stankevics and Klavins (2014) and review by Isabel 

Carretero (2020) provided wide information suggesting positive effects on musculoskeletal 

disorders, skin conditions, and circulation, the call for more scientifically sound medical and 

cosmetic use-based research with firm evidence is a main point of these theses. The potential 

for sapropel components to penetrate the skin, while offering therapeutic benefits, also raises 

concerns regarding potentially toxic elements like heavy metals, requiring further analysis and 

understanding of their interactions with human tissues (Carretero, 2020; Pavlovska et al., 2020; 

Stankevica & Klavins, 2014). 

In conclusion, the article “Sapropel – Mining Characteristics and Potential Use in 

Medicine” provides a comprehensive overview of sapropel, moving from its definition, 

formation, and composition to its historical use and potential therapeutic properties.  

It underscores the promise of sapropel as a natural therapeutic agent with diverse applications, 

but also critically points to the need for more rigorous scientific investigation to fully 

understand its mechanisms and ensure its safe and effective evidence-based use in the future. 

Geological and Biological profile of Sapropel  
The evaluation of primary study findings was more described in the article “Assessment 

of sapropel use for pharmaceutical products according to legislation, pollution parameters, 

and concentration of biologically active substances”. Focusing to answer the questions asked 

in the article “Sapropel – Mining Characteristics and Potential Use in Medicine”. 

The article highlights the considerable potential of Latvian freshwater sapropel as  

a natural resource for pharmaceutical and cosmetic applications, aligning with global trends 

towards using local and natural materials. The study provides crucial systematic research into 

the properties and composition of sapropel from specific Latvian lakes, which was previously 

lacking in the context of biomedical and biopharmaceutical potential. 
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Sapropel sediment appears in various colours and has a pH that ranges from 5 to 8. 

Typically, the humidity of sapropel deposits after extraction from lakes ranges between 65 % 

and 95 % (Vanadziņš et al., 2022). In this research, the sapropel was observed to be brown to 

greenish yellow, indicating a mixed type of sapropel, derived from the plankton and plants of 

the lake, and sometimes associated with the presence of peat. Green and yellow sapropel often 

correlates with high silica content and is usually found in moraine lakes. Black-coloured 

sapropel, which contains high organic matter, is typically found in lakes with low mineral 

content. The pH of the sampled sapropel deposits was around 7–8, suggesting high mineral 

content in these sediments and higher than typical swamp sapropel. The organic matter content 

was determined using the loss-on-ignition (LOI) method, where a sediment with at least 15 % 

organic matter qualifies as sapropel. This criterion is essential for differentiating sapropel from 

other sediment types. The organic matter levels in the tested lakes ranged from 20 to 90 % 

(Vanadziņš et al., 2022). The organic content varied from 52 to 54 %, with carbonate 

concentration between 4.40 and 5.00 % (Pavlovska et al., 2020; Stankevica & Klavins, 2014). 

Generally, a higher level of organic matter suggests a stronger potential for therapeutic effects. 

These findings align with the classifications made by Stankevica and Klavins (2014) regarding 

sapropel sediments found in Latvia (Stankevica & Klavins, 2014). 

The thickness and depth of the sapropel layer differ based on the lake’s depth and  

the rate at which organic matter decomposes. Layers that extend less than 1.5 m from the surface 

are typically regarded as underdeveloped and not suitable for sediment extraction (Pavlovska 

et al., 2020; Vanadziņš et al., 2022). The sapropel layer deemed suitable in this investigation 

ranged from 2.0 to 9.0 m; for comparison, sapropel layers in studied lakes were observed 

between 0.9 to 11.4 m from the sediment’s surface, with exact depths varying according to  

the specific lake and exploration site (Pavlovska et al., 2020). 

The sapropel’s composition exhibited significant variation among lakes due to a variety 

of factors. Additionally, the composition of sapropel is influenced by the surrounding 

environment and historical land use in the exploration area (Stankevica & Klavins, 2014; 

Vanadziņš et al., 2022). For instance, lakes located near agricultural zones may exhibit higher 

concentrations of pesticides and heavy metals within their sapropel sediments. The inflow from 

rivers and ditches plays a role in how pollutants and nutrients are distributed throughout  

the lake, which in turn affects the sapropel’s composition and results in differing microelement 

concentrations among various sapropel types (Pavlovska et al., 2020). 

The analysis of pollution parameters, heavy metals and pesticides shows that while these 

contaminants are present, their levels in the tested samples did not exceed current maximum 

acceptable levels for cosmetic products. However, the detection of DDT/DDE, persistent 
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organic pollutants, highlights the environmental history of the lake areas and the importance of 

ongoing monitoring. The highest levels of DDE/DDT were found in all depth of the Lakes 

Mazais Kivdalovas and Zeilu, as well as at one exploration point in the Audzelu Lake, and  

the amount of DDE/DDT was below the limit of quantification in other researched lakes. Limit 

values for DDT concentrations contained in Republic of Latvia, Cabinet Regulation No. 118, 

Annex 1, “Environmental Quality Standards for Dangerous Substances in Surface Waters”, 

where the average annual concentration of DDT is 0.025 μg/L or ppb and para-DDT – 0.01 μg/L 

or ppb. When comparing lakes, the concentrations of DDE/DDT were slightly different. In 

general, the concentrations of DDE/DDT found in surface water from lakes were lower than 

those found in samples of sapropel (Pavlovska et al., 2020). 

The analysis of heavy metal concentration in the sapropel provides information on  

the natural and anthropogenic origin of the metal flow in the lake’s ecosystem and the influence 

on sapropel application in medicine. Lead (Pb), Cadmium (Cd), Cobalt (Co), Nickel (Ni) and 

Copper (Cu) and Antimony (Sb) were present in all samples, but none of them exceeded 

maximum acceptable level compared with Health Canada or Food and Drug Administration 

(FDA) guidance on heavy metal impurities in cosmetics that can be tolerated in a different kind 

of cosmetic products (CFR Title 21 Food and Drugs, Sub-Chapter  G – Cosmetics, 2024; Health 

Canada, 2012). 

The presence of lead (Pb) in lakes was from 2.6 to 5.7 mg/kg and for Cadmium (Cd) 

from 0,13 to 0.24 mg/kg (in dried sapropel samples.) The limits in regulatory guidelines for 

cosmetics are Pb – 10 mg/kg and for Cd – 3 mg/kg (Health Canada, 2012). The identified 

concentration serves as an indicator of anthropogenic impact, highlighting the need for careful 

exploration of site selection (Pavlovska et al., 2020). The most common way of being exposed 

to heavy metals is through consuming contaminated food. In the case of sapropel sediment,  

the main route of exposure is expected to be through the skin. The potential for lead and 

cadmium to be absorbed through the skin is relatively low, and the concentrations found are not 

considered to be a health threat. However, due to the properties of heavy metals that cause them 

to accumulate, the concentration levels need to be regularly monitored during the phase of 

extracting the sapropel to ensure that the allowed concentration in the end product is not 

exceeded (Alqahtani et al., 2024; Borowska & Brzóska, 2015; Witkowska et al., 2021). 

The identification of biologically active substances like humic acids, fulvic acids, 

phenolic content, and antioxidant activity supports the traditional and perceived health benefits 

of sapropel. The levels of biologically active compounds, such as humic and fulvic acids, can 

change based on the age of the sapropel layers (Melo de et al., 2016; Jarukas et al., 2021; 

Levinsky, n.d.). In the analysed sapropel sediments, concentrations of 22–28 g of humic acids 
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and 5–9 g of fulvic acids were identified in each kilogram of dried sapropel. The variation in 

the diversity and activity of microorganisms within the sediment layers impacts the breakdown 

of organic matter and the generation of bioactive compounds, leading to differences in 

composition. Furthermore, microorganisms can also facilitate the regeneration and preservation 

of certain organisms and substances within the sediment. While the presence of microorganisms 

contributes to the properties and regeneration of the mud, it also presents a significant challenge 

for its use in pharmaceutical and cosmetic products. The activity level of microorganisms in 

sapropel is influenced by the sediment depth and prevailing climatic conditions. One possible 

explanation for the differing levels of microbiological activity in the sediment layers of lakes is 

the availability of oxygen and the depth, which affect the rate of organic substance decomposition 

and the formation of bioactive compounds (Klavina et al., 2020; Pavlovska et al., 2020). 

A key finding was that while raw sapropel samples did not identify active pathogens, 

the total bacterial counts (CFU/g) were very high, exceeding regulatory limits for cosmetic 

products by a considerable margin. Furthermore, some isolated species, such as Aeromonas 

sobria and Serratia fonticola, are identified as opportunistic pathogens. A high bacterial count 

in sapropel sediment samples underscores the critical need for processing steps, such as 

sterilisation or the addition of preservatives, to reduce the microbial load before sapropel can 

be safely incorporated into topical applications. The presence of Serratia fonticola in the Zeilu Lake 

particularly indicates potential pollution and necessitates sterilisation (Pavlovska et al., 2020). 

The legislative framework in Latvia governing sapropel extraction is comprehensive, 

covering environmental protection, impact assessment, pollution control, species and habitat 

conservation, spatial planning, protection zones, taxation, and waste management. Adherence 

to these laws is essential for ensuring that industrial-scale extraction is conducted responsibly 

and sustainably, minimising adverse environmental effects. Two guidelines for sapropel 

extraction developed was a part of the study and will be valuable for potential industrial 

sapropel miners. First guidelines “The sapropel extraction guidelines” describes the sapropel 

sediment exploration from lakes and second “Guidelines for stability tests, use and preservation 

of therapeutic properties of sapropel” looks deeper in valuable medical properties of sapropel 

sediments and extracts (Vanadziņš, et al., 2020; Vanadziņš, et al., 2020). 

In conclusion, the article “Assessment of sapropel use for pharmaceutical products 

according to legislation, pollution parameters, and concentration of biologically active 

substances” confirms that Latvian freshwater sapropel contains valuable biologically active 

substances and does not exceed current limits for heavy metal or pesticide content in the tested 

samples, supporting its potential as a raw material for pharmaceuticals and cosmetics. However, 

the high microbial load necessitates mandatory sterilisation or preservation to meet safety 
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standards for such applications. Further research is needed to fully identify the specific biome 

and microflora of sapropel and their roles. The variations observed in chemical composition, 

antioxidant levels, and microbiological profiles between different lakes and depths highlight 

the complexity of this natural material and the importance of establishing quality criteria and 

standard methods for extraction and processing (Pavlovska et al., 2020). 

In order to harness the potential of sapropel sediments, it is essential to establish  

a comprehensive approach for selecting lakes and extracting sapropel samples, considering 

various factors such as the lake’s bottom structure, average depth, the presence of landfills, and 

proximity to potential pollution sources, which should be included in a sapropel exploration 

protocol. Although there is no standardised quality control testing procedure for sapropel 

sediments, this study applied generally accepted principles to enhance our understanding of 

them. Organoleptic evaluations were conducted to assess characteristics such as colour, texture, 

odour, and the presence of any inclusions. Chemical analyses were performed to determine 

aspects like dry matter content, organic matter content, and carbonate levels. Active component 

assessments were carried out to gauge the antioxidant activity of the sapropel sediments. 

Microbiological testing was utilised to evaluate the microbiological quality of the sapropel 

sediments and to identify various types of bacteria, fungi, and yeasts (Klavina et al., 2020; 

Pavlovska et al., 2020). 

Until legal guidelines or regulation for using and testing sapropel sediments are 

established using the International Organization for Standardization (ISO) standard  

“ISO 21426:2018 Annex D: Guidelines for Control Analysis of Peloids and Monitoring” can 

be used as a reference for evaluating and ensuring the safety of sapropel for medicinal use.  

The SCCS guidelines, particularly those related to cosmetic ingredient safety testing, also are 

valuable resources for assessing the safety and toxicity of sapropel extracts and its use in 

medicine (Scientific Committee on Consumer Safety (SCCS), 2021). 

The potential of sapropel as a local natural resource, particularly in regions like Latgale 

in Latvia where significant deposits exist, was noted. Developing evidence-based applications 

could not only enhance healthcare and medical cosmetics but also promote the utilisation of 

these local resources and develop them. 

Extraction and Analysis of Sapropel bioactive components  
The organic components of sapropel originate from freshwater flora and fauna 

transformed under anaerobic, waterlogged conditions and exhibiting biological activities. 

Naturally formed sapropel primarily consists of HSs and non-humic substances like 

carbohydrates, amino acids, lipids, and proteins. HSs are formed from the microbiological 
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decomposition of plant and animal waste and are characterised by high molecular weight, redox 

activity, and antioxidant properties. HSs are divided into fractions based on solubility: humic acid 

(HA), hymatomelanic acid (HMA), fulvic acid (FA), and humin (Klavina et al., 2019, 2020). 

Humic acid (HA) is a major organic component of sapropel. It is a complex aromatic 

polymer with various functional groups and an average molecular weight of 6500 Daltons. HA 

is soluble in water at higher pH but insoluble under acidic conditions. HA molecules can interact 

with cell walls and receptors, penetrate tissues, and exert therapeutic effects, including nervous 

tissue regeneration, stimulation of macrophage defence, tissue repair, and anti-inflammatory 

action. Animal trials have shown no toxic effects of HA within a wide dosage range. However, 

the use of HA in medicine is complicated by its heterogenic structure, polydispersity, and 

properties varying with the source material. The diverse anti-inflammatory, 

immunomodulatory, and radioprotective benefits of natural substances appear to be linked to 

their antioxidant and antiradical properties (García-Villén et al., 2018; Klavina et al., 2020; 

Mirza et al., 2011; Noon et al., 2020; Obuka et al., 2018). For instance, the neuroprotective 

effect of HA in a focal cerebral ischemia model in rats is likely attributed to the antioxidant 

capabilities of HA (Alexandrova et al., 2013; Canellas et al., 2015; Melo de et al., 2016; Jurcsik, 

1994; Mirza et al., 2011; Yan et al., 2013). The therapeutic actions of HAs have also been 

connected to the mitigation of oxidative stress (Noon et al., 2020; C. Wang et al., 1996). 

Fulvic acid (FA) is another important HS fraction, composed of weak aliphatic and 

aromatic acids soluble at any pH level. FA molecules are smaller than HA, with an average 

molecular weight of 1200 Daltons. Despite their smaller size, FAs have a significantly higher 

absorption capacity (2-20 times greater than HA) due to their functional groups and carbon 

content. Their smaller size allows FA to penetrate deeper tissue levels and potentially carry 

trace elements. FAs have also shown bioactivity, including influencing smooth muscle 

contractile activity (Aiken & Malcolm, 1987; Canellas et al., 2015; Klavina et al., 2020; 

Klucakova, 2018; C. Wang et al., 1996; Winkler & Ghosh, 2018). 

Extracting bioactive compounds from sapropel involves various techniques such as 

Solid-Liquid Extraction (SLE), Ultrasound-Assisted Extraction (UAE), Supercritical Fluid 

Extraction (SFE), and others. These methods aim to maximise yield, avoid impurities, and 

achieve pharmaceutical quality. A crucial first step is often cell disruption, typically achieved 

by drying samples and applying an alkaline solution. Water or alkaline solutions are common 

extractants. The review of extraction methods (SLE, UAE, SFE) demonstrates that while 

several techniques exist, each comes with its own set of advantages and disadvantages 

concerning efficiency, cost, environmental impact, and potential impact on the extracted 

compounds (Klavina et al., 2019, 2020). 
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Classical methods for extracting HA and FA involve using a strong basic substance like 

sodium hydroxide (NaOH) solution, followed by separation steps based on solubility. NaOH 

extraction is widely used method that yields high amounts of humic and fulvic acids. It is 

simple, conventional, and requires no sophisticated instruments. However, it can be  

time-consuming, uses large amounts of solvents, and can potentially break down high 

molecular weight HA components at boiling temperatures, although following standard 

procedures mitigates this. Sodium pyrophosphate is another extractant option, particularly for 

sapropel with high calcium content, but may lead to heavy metal contamination (Caseldine  

et al., 2000; Klavina et al., 2019, 2020; Zanin et al., 2018). 

Other techniques like Ultrasound-Assisted Extraction (UAE) are rapid, non-thermal, 

and efficient, reducing solvent consumption and altering HS structure and activity. However, 

UAE may not be suitable for high-water content samples, has high energy consumption and 

instrumentation costs, and is difficult to scale up. Supercritical Fluid Extraction (SFE), often 

using CO2, is presented as an environmentally friendly alternative with low toxic, recyclable 

solvents, offering a continuous extraction process free of inorganic salts and heavy metals. 

Disadvantages include high instrumentation costs and complex operation (Chen et al., 2019; Hidayah 

& Abidin, 2017; Ivanovs & Blumberga, 2017; Vinatoru et al., 2017; K. Wang & Luo, 2017). 

Analysis and characterisation of sapropel extracts face a challenge as there are no 

commonly accepted standard methods. The minimal quality criteria suggested by 11th Edition 

of the Pharmacopoeia for plant extracts include moisture, microbial count, heavy metal residue, 

and density (The European Pharmacopoeia 11th Edition, 2023). The choice of extraction 

method, alongside sediment pre-treatment and characteristics, significantly influences  

the extract’s composition and the efficiency of the process. Storage conditions can vary based 

on aggregate state of extract. Liquid extracts and dried HA are stable at 4 °C, while FA is often 

frozen or freeze-dried and stored at −4 °C. Extracts are reported to maintain biological activity 

for months in aqueous solutions (Beer et al., 2000; Klucakova, 2018; Lamar et al., 2014; 

Winkler & Ghosh, 2018). 

The use of sapropel extract in medicine and pharmacy is complicated by its variable, 

heterogeneous, and polydisperse composition. There is no common standard for obtaining or 

analysing sapropel extract for pharmaceutical use. Factors like the sediment’s origin, type, 

composition, and extraction parameters significantly influence efficiency (Lamar et al., 2014). 

Pre-treatment and storage methods are also important. While NaOH extraction with sonication 

is suggested as suitable, and HPLC for analysis, sufficient experimental data for many 

pharmacopoeia parameters is lacking (Hoang et al., 2021). Despite the current challenges, 

sapropel extract holds significant commercial potential in cosmetics and pharmaceuticals, 
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potentially driving the development of more sophisticated and standardised methods in  

the future. 

In conclusion there is the significant potential of freshwater sapropel as a source of 

biologically active compounds, particularly humic substances like humic acid (HA) and fulvic 

acid (FA), for applications in medicine, pharmacy, and cosmetics (Klavina et al., 2020; 

Pavlovska et al., 2020). However, a central challenge is generally accepted standard methods 

for both extracting these bioactive compounds from sapropel and for analysing and 

characterising the resulting extracts. This absence of standardisation is a significant challenge 

for the consistent and reliable use of sapropel extracts in regulated industries such as  

the pharmaceutical industry. The literature research explicitly states that sapropel’s composition 

is not stoichiometric and varies, leading to heterogeneity and polydispersity in extracts.  

This inherent variability, coupled with the diversity of sapropel sediments themselves, makes 

developing universal standard procedures difficult(Klavina et al., 2019, 2020; Obuka et al., 2018). 

Antioxidant Properties of Sapropel Extract 
Sapropel is attributed with having an antioxidant effect that is believed to improve skin 

structure, smoothen and prevent wrinkles, remove swelling, strengthen nails and hair, and 

normalise sebaceous gland secretion (Vanadziņš et al., 2022). This multifunctional effect is 

attributed to the complex chemical and biological structure, which includes humic acids, fulvic 

acids, heratomelic acids, various vitamins, and microorganisms (Klavina et al., 2019; Kļaviņa 

et al., 2024, 2025). Among the important organic acids in sapropel are humic acids (HA) and 

fulvic acids (FA), which are naturally resistant, high-molecular heterogeneous compounds. 

These substances consist of both aromatic structures and aliphatic circuits with different 

functional groups. The polyphenols in humus substances found in sapropel can be used as 

antioxidants in cosmetics and medicine (Ahmed et al., 2019; Alara et al., 2019; Puangbanlang 

et al., 2019; Tarnawski et al., 2006; Xu et al., 2017). 

The assessment of antioxidant activity in this study was discussed throughout all articles 

and tested across all study periods. To assess the antioxidant properties in the study, the sapropel 

extracts was characterised based on for their Total Phenolic Content (TPC), Total Antioxidant 

Status (TAS), and DPPH radical scavenging activity. 

The highest TAS values (1.08 ± 0.03 mmol/L) and TPC (146.26 ± 1.16 µg GAL/mL) 

were observed in extracts from the Audzelu Lake, which also had high HA content. The lowest 

TAS (0.31 ± 0.01 mmol/L) and TPC (42.07 ± 0.55 µg GAL/mL) were found in the Ivusku Lake. 

There was a strong correlation (R2 = 0.90) between TAS and HA concentrations. A substantial 

correlation (R2 = 0.93) was also found between TPC and TAS. The findings indicate a strong 
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correlation between antioxidant activity (measured as TAS and TPC) and HA concentration, 

but no correlation with FA concentration. This suggests that polyphenols, which contribute 

significantly to antioxidant properties, are responsible for the antioxidant activity observed in 

the extracts, and their presence correlates with HA content. 

Humic acid and fulvic acid concentrations were also measured using a spectrometric 

method. These concentrations varied significantly between lakes. For HA, the levels ranged 

from a minimum of 113.1 mg/ml (Ivusku) to a maximum of 167.8 mg/ml (Mazais Kivdalovas). 

For FA, the range was from 44.5 mg/ml (Dunaklu) to 76.5 mg/ml (Ivusku). Results revealed 

that the antioxidant activity is dependent on the concentration of the carbon fraction in FA and 

corelates with organic matter in sapropel. It was found that antioxidant levels are considerably 

higher in organic sapropel extracts from the Lakes Audzelu, Mazais Kivdalovas, and Zeilu. 

This broadly aligns with their TPC values being among the highest measured. 

One notable tendency was that the Dunaklu Lake had considerably lower levels of both 

antioxidants and humic and fulvic acids. However, the Ivusku Lake, which had the lowest 

antioxidant levels, showed a high FA level, indicating that while FA is important, other factors 

like polyphenols in extract or the carbon fraction concentration within FA also influence 

antioxidant activity. Lim and colleagues (2019) in their study about Sargassum serratuifolium 

and Zykova et.al. (2017) in their study about HA have found the similar correlation between 

antioxidant components and what contributes to their activity (Lim et al., 2019; Zykova et al., 

2018). High TPC in sapropel extracts suggests potential for treating skin diseases, complex 

wounds, and chronic non-healing wounds (Aeschbacher et al., 2012; Hoang et al., 2021; Neha 

et al., 2019). 

In summary, the study confirmed the presence of compounds associated with 

antioxidant activity, such as humic acids, fulvic acids, and total phenolics, in Latvian freshwater 

sapropel extracts. The levels of these components and the measured antioxidant activity were 

found to vary significantly depending on the lake from which the sapropel was extracted. Lakes 

like Audzelu, Mazais Kivdalovas, and Zeilu appeared to have higher levels of compounds 

contributing to antioxidant potential. 

Cytotoxicity Assessment (Neutral Red Uptake – NRU) 
The NRU test was used to check the concentration-dependent cytotoxicity of sapropel 

extracts on mouse fibroblasts (BALB/c 3T3) at FA concentrations of 17.5, 70.0, and  

140.0 µg/mL. Assessing NRU data relative to both standard medium (S10) control and solvent 

control revealed that results correlated well only at the lowest concentration (17.5 µg/mL)  

(The Food and Drug Administration, 2015). At higher concentrations, the data comparison 
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diverged, suggesting potential toxic effects from the solvent itself. For instance, at 140 µg/mL, 

NRU decreased significantly compared to the S10 control but increased significantly compared  

to the solvent control, indicating the solvent’s toxicity at high extract concentrations  

(Kļaviņa et al., 2024). 

Sapropel extract from the Audzelu Lake showed a significant decrease in NRU 

compared to S10 control at all tested concentrations, but an increase compared to solvent 

control at 70.0 and 140.0 µg/mL, further highlighting the solvent’s potential toxicity. Extracts 

from the Lakes Ivusku and Zeilu at 17.5 µg/mL showed no harmful effects compared to  

the S10 control and potentially beneficial effects, with Ivusku showing better NRU than  

the solvent control. The Lakes Dunaklu and Mazais Kivdalovas showed moderate results at low 

concentrations, still suggesting potential solvent toxicity. At 70 µg/mL, most extracts showed 

lower NRU than both controls, though some were slightly better compared to the solvent 

control. 

The article “Unlocking the Therapeutic Potential of Freshwater Sapropel Extracts:  

In Vitro Analysis and Antioxidant Profiling for Skincare Applications” describes  

the experimental setup involved diluting the cell culture medium to achieve high extract 

concentrations up to 40 % dilution for 140 µg/mL FA, that could create double-stress conditions 

(diluted media, high FA, low pH). Mammalian cells are sensitive to pH changes, and  

the samples did not have an ideal pH for cell cultures, which could have influenced the results. 

It is speculated that sapropel’s pH buffering capacity might have contributed to cell survival by 

normalising medium pH, potentially more so than the biological activity of the extracts (Phelan 

& May, 2016, 2017). The solvent toxicity was particularly visible at high concentrations, and 

when excluded from the analysis, NRU appeared higher than the S10 control (Jurcsik, 1994). 

Cell Growth Assessment (Cell-IQ) 
Real-time monitoring using Cell-IQ® was employed to assess changes in the growth of 

BALB/c 3T3 fibroblasts and human keratinocytes (HaCaT) exposed to sapropel extracts at 

various concentrations. Low concentrations (3.5 µg/mL and 7 µg/mL) generally had no effect 

on cell growth, except for inhibitory effects of extracts from the Lakes Mazais Kivdalovas and 

Dunaklu on HaCaT cells after more than 24 hours. At 17.5 µg/mL, a significant promotion of 

BALB/c 3T3 cell growth was observed for 12 hours, followed by a significant decrease after 

24 hours. HaCaT cell growth decreased after extended incubation (> 18h) with the Mazais 

Kivdalovas Lake extract. At 35 µg/mL, HaCaT growth was generally unchanged, but  

the samples from the Lakes Mazais Kivdalovas and Audzelu inhibited growth after more than 

24 hours. BALB/c 3T3 cells showed slight initial growth increase (12 h) with Mazais 
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Kivdalovas Lake extract, followed by inhibition. Audzelu and Dunaklu Lakes extracts also 

showed an inhibitory effect on 3T3 cells, with less initial stimulation. At 70 µg/mL, a significant 

inhibitory effect on 3T3 growth occurred after more than 9 hours, appearing sooner for  

the extracts from the Lakes Audzelu and Dunaklu. The Mazais Kivdalovas Lake extract at this 

concentration showed initial stimulation (6h) on 3T3 cells, followed by a more profound 

inhibitory effect. HaCaT growth was not significantly affected for up to 12 hours (Audzelu) or 

9 hours (Dunaklu) at 70 µg/mL, with significant inhibition thereafter. The Audzelu Lake extract 

at 70 µg/mL had a slight stimulating effect on HaCaT growth over a longer period (18h).  

At 140 µg/mL, the Audzelu Lake extract significantly promoted HaCaT cell growth for up to 

18 hours and 3T3 cell growth for up to 3 hours. Mazais Kivdalovas Lake extract showed 

minimal stimulation on HaCaT cells but significant inhibition after 12 hours. Initial stimulation 

on BALB/c 3T3 cells from Mazais Kivdalovas and Audzelu Lakes extracts was observed for 

up to 3 hours, followed by a sharp decrease in growth (Hoang et al., 2021; C. Wang et al., 1996). 

Overall, the cell growth findings indicate that biologically active substances (FA and 

HA) in sapropel extracts can promote cell growth in the short term (up to 3–6 hours) at high 

concentrations, but higher concentrations over longer durations (e. g. > 12 hours) show 

cytotoxic effects. HA’s ability to generate active oxygen may accelerate wound healing, while 

its antioxidant activity can compensate and restrict peroxidation, suggesting optimal effects at 

lower concentrations. 

The study successfully demonstrated that sapropel extracts from different lakes in Latvia 

possess varying levels of HA, FA, and antioxidant activity, correlating strongly with HA 

content and TPC. These characteristics can potentially be used to identify and characterise 

sapropel sources for cosmetic and pharmaceutical manufacturing. The high antioxidant activity 

supports the traditional and potential use of sapropel for skin health and wound care  

(Y. Ji et al., 2016; Kļaviņa et al., 2024; Mehvari et al., 2024; Sim et al., 2022). 

However, the in vitro testing revealed complex effects depending on concentration and 

exposure time. While short-term exposure to higher concentrations showed promising cell 

growth promotion, longer exposures often resulted in inhibition or cytotoxic effects. The NRU 

test results were significantly impacted by solvent toxicity and suboptimal cell culture 

conditions (diluted media, low pH) necessitated by the need to achieve high extract 

concentrations. This highlights a critical challenge in translating sapropel extract research into 

practical applications: finding appropriate formulations and concentrations that maintain 

bioactivity while ensuring biocompatibility and avoiding toxicity to mammalian cells (Phelan 

& May, 2016, 2017). 
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The study suggests that sapropel extracts, particularly those with high antioxidant 

properties, do not cause significant harm in cell cultures under certain conditions and could be 

tested for human product development. Their antioxidant properties potentially protect skin from 

environmental stress, offering beneficial properties during short-term use (Hoang et al., 2021). 

Overall, FA and HA content vary depending on the lake source, influencing the sapropel 

extract’s potential biological activity. There is a strong correlation between antioxidant activity 

(TAS, TPC) and HA concentration. Sapropel characteristics can help identify suitable sources 

for cosmetic and pharmaceutical production. While sapropel extracts did not show significant 

harm in short-term cell culture tests and exhibited potential beneficial properties, particularly 

antioxidant effects, higher concentrations over longer durations showed cytotoxic effects.  

The findings suggest a perspective use for short-term topical therapeutic skin applications 

(Kļaviņa et al., 2024). 

For future studies involving cell cultures, it is essential to conduct detailed analysis of 

natural sapropel samples before cell testing to better understand their effects. Optimise methods 

to avoid issues like solvent toxicity and media dilution when testing cell cultures, perhaps by 

finding ways to better control pH and extract concentration in the cell culture environment.  

Use non-animal, human-relevant toxicity models. Identify sapropel extracts with optimal 

composition and beneficial biological effects for skin applications. Explore water-soluble 

formulations for potentially better skin penetration compared to existing dry sapropel extract 

products (Kļaviņa et al., 2025). The cytotoxicity assessment was only part of a project aimed at 

analysing medical sapropel, elaborating extraction methods, and potentially developing 

products. A patent was filed for a water-soluble sapropel extract hydrogel and its preparation 

method, that was the innovation of this study (Auce et al., 2022). 

Sapropel Extract Hydrogel: Preparation and Stability 
The article “Sapropel-enriched sodium carboxymethyl cellulose gel systems: 

formulation approaches, stability and bioactive potential” investigates the development of 

stable, water-soluble hydrogels containing sapropel extract for potential pharmaceutical and 

cosmetic uses. Traditional applications like thermal mud baths require stationary places and 

large amounts of material, making them inconvenient. Water-insoluble creams and patches 

containing sapropel extract exist (Strus et al., 2018, 2019). In a trial with 23 volunteers who had 

heightened skin sensitivity to irritants (dermatitis), the cream was applied to the skin every  

24 hours, leading to a reduction in inflammation. Patches that incorporate the sapropel extract 

are also recognised. These patches, which contain the sapropel extract cream, are placed on  

the skin for 24–96 hours, resulting in decreased inflammation in cases of dermatitis and eczema  
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(Ozkan et al., 2015; Winkler & Ghosh, 2018), but a stable, water-soluble hydrogel of sapropel 

extract, preserving bioactive properties and maintaining shape after application, was poorly 

researched, highlighting the desirability of the current study. 

Ointments and gels are popular dosage forms for topical applications and are extensively 

used in both medicine and cosmetics. Modern skincare products are recognised for their 

adaptability, delivering diverse and comprehensive effects even with relatively straightforward 

formulations. A prime example of biological effects observed in commonly used cosmetic 

products is the application of a hydrolipid occlusion layer or various forms of anti-radical 

protection to the epidermis. These techniques are employed in medicine, pharmacy, and 

cosmetics (Barbulova et al., 2015; Bevan et al., 2013; Bom et al., 2019; Costa & Santos, 2017; 

Ficheux et al., 2019; Gianeti & Maia Campos, 2014). 

Researchers have developed a water-soluble hydrogel system incorporating sapropel 

extract, utilizing sodium carboxymethylcellulose (Na-CMC) as the gelling agent. This hydrogel 

is designed as a potential delivery system for the bioactive compounds present in sapropel, 

aiming to address the limitations associated with traditional applications such as mud baths and 

therapeutic patches. 

Sodium carboxymethylcellulose (Na-CMC), a water-soluble cellulose derivative known 

for its gel-forming capabilities, non-toxicity, biodegradability, and biocompatibility, was used 

as the gelling agent. Na-CMC is soluble in water, forming a neutral or alkaline transparent 

viscous liquid that can produce a three-dimensional hydrogel structure. It does not trigger  

an immune response, unlike some animal-origin polymers, and has shown no signs of irritation 

or significant adverse effects in toxicity studies (Ghorpade et al., 2018; Mo et al., 2022; Sebert 

et al., 1994; Wellens et al., 2022). 

Eight different hydrogel formulations were prepared and evaluated: four containing 

sapropel extract and four without, to assess the effect of the extract on the hydrogel.  

The formulations used Na-CMC (2.5 %), glycerol (8 %), ethanol (8 %), and purified water, 

with or without sapropel extract (5 % containing 140 µg/g FA). Buffer solutions of sodium 

chloride, magnesium sulphate, or magnesium chloride were also included in some formulations. 

The sapropel extract was obtained from mixed sediment layers of the Audzelu Lake in Latvia, 

identified as promising for medical products. Hydrogel preparation involved mixing ingredients 

at controlled temperature and speed (Burgardt et al., 2015). 

The prepared hydrogels were subjected to various evaluation tests over a 2-year period 

under different storage conditions (4 °C, 23 °C, 45 °C, dark, UV light) (Kļaviņa et al., 2025). 

Organoleptic properties, including visual inspection for appearance, colour, odour, 
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homogeneity, consistency, and signs of instability were determined during each storage period 

under specified conditions. 

Stability was evaluated through physical and chemical tests for each formulation 

developed in this research (Kļaviņa et al., 2025): 

• Centrifugal test: Assessed resistance to centrifugal force. 

• Thermal tests: Freeze-thaw and heating-cooling cycles tested thermal stability. 

• Contact angle: Measured surface wettability (hydrophilicity/hydrophobicity). 

• Water retention: Evaluated moisture retention at 60 °C over time. 

• Microscopy (Polarized Optical & SEM): Analysed texture, morphology, and 

structure. 

• pH: Monitored pH changes over time. 

• Viscosity: Measured at varying spindle speeds. 

• Rheology: Assessed complex viscosity, shear-thinning, yield stress, and 

viscoelastic moduli (G', G''). 

• XRD: Identified mineral content in sapropel and hydrogel crystallinity. 

All sapropel extract-containing formulations were smooth, homogeneous, and  

light-yellow with good spreadability and acceptable stability. Hydrogels without extract were 

transparent. Organoleptic properties scored high initially but decreased over a 2-year period, 

especially at elevated temperatures and under UV light. Centrifugal and thermal tests showed 

no phase separation or distress, confirming physical stability. All formulations showed  

a tendency to wet the surface with contact angles below 90°, decreasing over time, indicating 

hydrophilic properties. Formulations with buffer salts and sapropel extract showed a shift 

towards more hydrophobic behaviour but lost water content slower than the formulation 

without them. 

Formulations could hold a considerable amount of water, with water retention between 

42 % and 53 % after 16 hours at 60 °C. Formulations with sapropel extract and buffer salts lost 

water content more slowly. Microscopy and SEM revealed that all formulations had a porous 

structure, with those containing both buffer salts and sapropel extract being more porous and 

having a rougher surface. 

pH levels ranged from 4.7 to 7.4, within the acceptable range for skin application. 

Formulations with magnesium chlorate showed greater pH fluctuations, while others, especially 

those stored at 23 °C in the dark, had stable pH values. 

Viscosity analyses showed that sapropel extract decreased viscosity, particularly under 

fluctuating temperatures. Magnesium sulphate-buffered formulations exhibited the most stable 

viscosity, while sodium chlorate-buffered formulations also showed stable viscosity over time 
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with higher values after 2 years. Magnesium chlorate-buffered formulations maintained overall 

stable viscosity but showed fluctuations or increases over time. 

Rheological tests confirmed the shear-thinning nature of the hydrogels, where viscosity 

decreases with increasing shear rate. They also showed the yield stress required to initiate flow 

and the thixotropic behaviour (reversible transition between solid-like and liquid-like states 

under stress). G' and G'' values were higher for formulations with magnesium salts. 

XRD analysis confirmed the amorphous structure characteristic of hydrogels in all 

formulations. Analysis of sapropel extracts from different depths revealed variations in mineral 

composition and crystalline structure of humic substances and fulvic acid. 

In the discussion, the feasibility of incorporating sapropel extract into stable,  

water-soluble hydrogels suitable for therapeutic and cosmetic uses. The hydrogel crosslinking 

process occurs through two mechanisms. Firsts, ionotropic gelation which is achieved  

the addition of divalent soluble salts like magnesium chlorate and magnesium sulphate. 

Magnesium ions (Mg²⁺) interact with the negatively charged carboxyl groups of Na-CMC, 

forming a crosslinked network. Magnesium sulphate-buffered formulations showed better 

stability compared to magnesium chlorate (Fang et al., 2022). 

Second hydrogen-bonded hydrogel formation initiated by the addition of acidic sapropel 

extract containing HA and FA, which lowers the pH level. This process replaces sodium ions 

(Na+) in CMC with hydrogen ions (H⁺) promoting hydrogen bonding and decreasing CMC’s 

water solubility, resulting in a flexible hydrogel. HA and FA within the sapropel extract also 

act as mild crosslinking agents due to their negatively charged functional groups interacting 

with H⁺ and Mg²⁺ ions, enhancing the crosslinking process. Their amphiphilic nature may 

contribute to the porous matrix observed in the images. The porosity and water retention 

capabilities are seen as beneficial for wound healing applications, helping to absorb wound 

exudation and keep the wound hydrated (Al-Arjan et al., 2022). The slow water loss in 

formulations with sapropel extract and buffer salts suggests the extract changes the network 

structure. The presence of Mg²⁺ ions, introduced via the buffer salts, is also discussed for its 

biological significance, noting its role in various processes and its potential to promote 

angiogenesis and modulate inflammation, creating a favourable environment for wound healing 

(Al Alawi et al., 2018). The pH range of the formulations (4.7–7.4) is considered favourable 

for wound healing, as it aligns with the varying pH of acute and chronic wounds (Sim et al., 

2022; Zhang et al., 2022). Sapropel extract’s acidity helps in crosslinking and provides extra 

stability, potentially extending shelf life. 

Na-CMC hydrogels are considered good candidates for topical drug delivery systems 

due to high water content, low irritation, and ability to facilitate deeper skin penetration.  
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Na-CMC is also a mucoadhesive gel, which could increase contact between the sapropel extract 

and the wound surface, potentially boosting the effectiveness of HA and FA (Silva da et al., 

2022; Pornpitchanarong et al., 2022). Sapropel extract itself is noted for its regenerative abilities 

on epidermal cells and potential to promote collagen synthesis, eliminate free radicals, and 

inhibit melanin formation, which could aid in wound healing (Kļaviņa et al., 2024, 2025). 

The article presents four possible models for how the hydrogel containing sapropel 

extract might interact with wounded and undamaged skin. Firstly, the enhancement of 

transdermal passages due to the permeation enhancers ethanol and glycerol present in  

the formulation. Secondly, hydrogel and lipid exchange with the stratum corneum, potentially 

enhancing hydration and permeability, though exact lipid concentration was not determined. 

Thirdly, free release of HA and FA directly into the wound, leveraging their anti-inflammatory, 

antimicrobial, antioxidant, and regenerative properties. And finally, intact vesicular skin 

penetration, if vesicles are formed within the hydrogel, protecting active ingredients and 

ensuring sustained release (Kļaviņa et al., 2025). Overall, the study suggests  

the sapropel-enriched Na-CMC hydrogel is a potential pharmaceutical product for preventing, 

treating, and accelerating wound and scar healing. The use of CMC and sapropel also aligns 

with the global priority of using natural, biodegradable local resources for environmentally 

friendly products. 

In conclusion, during this study a stable and homogeneous sodium 

carboxymethylcellulose (Na-CMC) hydrogel system incorporating sapropel extract was 

successfully developed and optimised for topical application. The resulting formulation was 

free of crystalline impurities, exhibited high water content, and showed low potential for skin 

irritation. Enhanced transdermal delivery of bioactive compounds further indicates its potential 

for use in wound care and drug delivery. The study demonstrated that sapropel extract – rich in 

humic and fulvic acids – not only contributed to hydrogel stability and crosslinking but may 

also support wound healing through mechanisms such as promoting collagen synthesis and 

reducing oxidative stress. The hydrogels maintained favourable pH levels and remained stable 

under varied environmental conditions, reinforcing their suitability for pharmaceutical 

development (Kļaviņa et al., 2025).  

Preliminary observations in this study suggested possible mechanisms for skin 

penetration of sapropel compounds, including enhanced permeability due to the hydrogel 

matrix and the bioactivity of humic substances. However, dedicated studies to experimentally 

confirm and quantify these mechanisms were not conducted within the scope of this work and 

remain an important direction for future research. 
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Despite these promising results, challenges remain. Effective penetration through  

the stratum corneum must be ensured to achieve therapeutic efficacy. Future work should 

investigate key parameters including hydrogel-skin interactions (e. g. contact angle, surface 

tension, adhesion energy), fibroblast viability, and the controlled release kinetics of  

sapropel-derived compounds. This research provides new insight into the role of magnesium 

salts in hydrogel formulation, offering a potential route to enhance structural integrity and 

therapeutic function. 

Overall, the findings support the potential of sapropel-based hydrogels as an innovative, 

nature-derived solution for topical therapies. This aligns with broader healthcare goals focused 

on sustainable, bio-based treatment strategies. Further experimental validation and clinical 

studies are essential to confirm safety and efficacy in real-world applications. 
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Conclusions 

1 Sapropel is a valuable natural resource found in Latvian lakes and beneath peat layers in 

bogs. Extraction is governed by a legal framework; guidelines for exploration were 

developed as part of this research. Its rich bioactive compounds, including humic and fulvic 

acids, provide important anti-inflammatory, antioxidant, and antimicrobial benefits, 

making it effective for promoting skin health and treating conditions like acne, rashes, and 

dermatitis. 

2 Tested samples contained heavy metals and pesticide residues; their levels in the tested 

samples were within acceptable limits for cosmetic use. However, raw sapropel samples 

exhibited high microbial counts, exceeding limits for topical applications, necessitating 

mandatory sterilisation or preservation steps for safe pharmaceutical and cosmetic 

formulation. 

3 Bioactive compounds, predominantly humic acids (HA) and fulvic acids (FA), are 

commonly extracted from sapropel using solid-liquid alkaline extraction methods.  

The concentration and biological activity of these components vary based on the sapropel 

source and the specific extraction process employed, highlighting the need for standardised 

protocols to utilise sapropel extract in pharmaceutical use. Sapropel extracts demonstrated 

promising antioxidant activity and short-term cell regeneration-promoting effects in vitro, 

although prolonged high concentrations showed cytotoxic effects. 

4 Eight formulations of sodium carboxymethylcellulose (Na-CMC) hydrogels were 

successfully developed, with four incorporating sapropel extract. The presence of HA and 

FA in the extract facilitates dual crosslinking mechanisms within the Na-CMC polymer 

network, contributing to the formation of a robust, porous structure. Magnesium salts play 

a crucial role in enhancing ionic crosslinking and contributing to the hydrogel’s porosity, 

which is beneficial for properties such as water retention and the potential sustained, slower 

release of therapeutic agents.  

5 Sapropel-enriched hydrogels exhibited favourable physical stability, maintained  

a biocompatible pH range, and retained organoleptic qualities, particularly under all storage 

conditions, supporting their potential for use in topical products. Formulations buffered 

with magnesium buffer salts and sapropel extract demonstrated the most consistent stability 

over time. 

6 Physical-chemical and persistence testing confirmed the hydrogels’ suitability as  

a platform for topical application, addressing challenges of traditional sapropel use. 
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In conclusion, the Thesis supports the hypothesis. Sapropel extract demonstrates 

effective compatibility with carboxymethyl cellulose gels, contributing positively to their 

structural stability and enhancing their potential as delivery platforms for therapeutic and 

cosmetic applications, particularly in areas like skin care and wound healing. 
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Future Research Proposals 

1 Investigate Skin Penetration Mechanisms 
While potential pathways for sapropel compound absorption have been hypothesised, 

targeted experimental studies are needed to confirm and quantify them. Future work should 

employ in vitro and ex vivo skin models to better understand diffusion dynamics and optimise 

therapeutic efficacy. 

2 Evaluate Hydrogel–Skin Interface Properties 
To enhance product performance and user comfort, further studies should examine 

physical interactions at the hydrogel–skin interface. Key parameters include contact angle, 

surface tension, adhesion strength, and moisture retention. 

3 Conduct In Vivo and Clinical Trials 
Building on promising in vitro data, controlled animal studies and clinical trials are 

essential to evaluate safety, biocompatibility, and therapeutic outcomes in real-world scenarios, 

particularly for wound care, dermatological, and cosmetic uses. 

4 Explore Broader Applications of Sapropel-Based Hydrogels 
Beyond wound healing, sapropel-based hydrogels hold potential for treating 

inflammatory skin conditions and serving as carriers for localised drug delivery. Expanding 

application fields could enhance the material’s medical relevance. 
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