Skip to main content
Audience: RSU doctoral students, research staff, anyone interested.
Language: English

Advances in sequencing technologies have created vast and diverse biological and biomedical datasets (multiOmics). This lecture will introduce methods for integrating multiOmics data, showing how combined analysis can reveal biological insights not captured by single datasets. I will highlight key machine learning approaches and practical strategies for analyzing large-scale biomedical data.

About the lecturer

nikolay_oskolkov.pngNikolay Oskolkov is a bioinformatician and Group Leader of the Metabolic Research Group at the Latvian Institute of Organic Synthesis (LIOS). With a PhD in theoretical physics (2007, Moscow State University / University of Ulm), he transitioned to life sciences in 2011 and has since applied statistical and machine learning methods to biomedical data. His research background spans medical genomics, diabetes, and cell and evolutionary biology at Lund University and NBIS SciLifeLab, Sweden.

Location

Room
Senāta zāle / tiešsaistē, Zoom

Tā kā Rīgas Stradiņa universitāte ir publiska iestāde, pasākuma laikā jūs varat tikt fotografēts un/ vai filmēts. Fotogrāfijas un video var tikt publicēts universitātes mājaslapā, sociālajos medijos u. tml. Vairāk par savām tiesībām un iespēju iebilst pret šādu datu apstrādi varat uzzināt RSU Privātuma politikā. Ja iebilstat pret personas datu apstrādi, lūdzam par to informēt, rakstot uz rsuatrsu[pnkts]lv (rsu[at]rsu[dot]lv).

As Rīga Stradiņš University (RSU) is a public institution you could be photographed and/or filmed during the event. Your personal data might be used to further the interests of RSU, e.g. for marketing or communication activities (incl. social media coverage). Read more about your rights see the RSU Privacy Policy. Should you have any objections to your personal data being processed please inform us via e-mail at rsuatrsu[pnkts]lv (rsu[at]rsu[dot]lv).

Date:

Contacts